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EXECUTIVE SUMMARY

SUBSURFACE CONDITION EVALUATION
FOR ASPHALT PAVEMENT

PRESERVATION TREATMENTS

Introduction

Most pavement preservation treatments involve some sort of

surface coating to the existing pavement. Surface sealing is one of

the purposes of such a treatment, and 99% of the time, results in

extended life of the pavement. However, in some cases where the

existing pavement is not structurally sound due to high air voids

(low density) and water stripping of the existing underlying

pavement, the surface treatments fail with delamination, potholes,

cracks, etc. In addition, the treatment can accelerate the water

stripping process of the underlying pavement layer. For example,

the SR-70 section with microsurfacing in the Vincennes district

had several small areas of localized failures due to water stripping

underneath the pavement.

According to the INDOT Design Manual, water stripping

consists of the debonding of the binder film from the aggregate.

Visible signs of water stripping include surface delamination,

raveling, potholing, or surface discoloration. Water stripping is an

aggregate-dependent distress caused by a combination of heat,

pressure, and water. The recommended treatment for water

stripping is to remove the stripped material by asphalt milling and

then to overlay the milled surface.

INDOT currently does not have any guideline for evaluating or

identifying the potential for high air voids and water stripping on

existing asphalt pavements. Currently, there is a need to develop

methods for making a quick diagnosis of pavement subsurface

condition to identify severity and extent of the physical and

mechanical distresses. The method can be used for selecting the

right pavement for treatment application.

The primary objectives of this research project were: (1) to

develop a tool for identifying and quantifying the subsurface

distresses; and (2) to develop a methodology for evaluating the

asphalt pavement subsurface condition in selecting optimum

pavement preservation treatments, including microsurface, ultra-

thin bonded wearing course, and 4.75 mm HMA overlay.

Findings

The subsurface condition test methods selected for the study

were evaluated and correlated.

The lab test results showed poor correlations among the water

stripping severities, air voids, and tensile strengths. Thus, the air

voids or tensile strength cannot properly estimate the water

stripping severity or vice versa.

When the laboratory test results with the surface distresses or in

the GPR-based problem locations were compared to that without

the surface distresses or in the GPR-based non-problem locations,

in general, average air voids and water stripping severities decrease

and average tensile strengths increase. The observation confirms

that the evaluation processes are applicable for evaluating the

subsurface condition. However, t-test revealed that the laboratory

test results, which were conducted with and without the surface

distresses, were not significantly different. In contrast, the

laboratory results in the GPR-based problem and non-problem

locations were significantly different.

The probability that a location determined to be problematic by

GPR to be on one of poor conditions based on lab tests was 1.0.

The same probability was obtained for a GPS-based problem

location. Accordingly, it was concluded that the laboratory tests

with the surface distresses survey or the GPR measurement can be

reliable method to evaluate the subsurface condition.

The FWD results had a weak correlation with the laboratory

test results possibly due to fairly long testing interval (i.e., 328 ft).

The current FWD test protocol should be improved for evaluating

the subsurface condition in pavement preservation application.

A guideline of subsurface condition of pavement for pavement

surface treatment application was developed utilizing the findings

from the study on SR-70. A concept of hierarchy was used in the

guideline by taking project importance and available resources

into consideration. Tools including the guideline, computer

software (e.g., iSub and iMoisture), and its manual were also

developed based on the methodology as a research product. iSub

provides user-friendly system which helps to follow the hierarchy

of evaluation steps. Furthermore, iSub automatically calculates

the overall condition of the pavement subsurface as severity rating

for each laboratory test result was implemented into the software.

iMoisture detects uncoated aggregates and quantifies the area in a

sample by employing the digital image analysis technology.

Two different evaluation methods, GPR based (Level 1) and

surface distress based (Level 2), were applied on SR-70 test section

and the subsurface condition was evaluated. It was found that the

main distresses on SR-70 were longitudinal cracks, fatigue cracks,

and potholes. The longitudinal crack was the most widely

distributed distress among the three distress types with 22% of

lane length in the 2-mile test section. Based on the water stripping

test results and the core visual observations, it was confirmed that

the test section on SR-70 had the water stripping problem. In

addition, overall, there was no subsurface condition difference

between left wheel and right wheel paths. In general, based on the

laboratory test results, a layer consisted of the micro-surfacing and

the asphalt surface course was the poorest condition among

asphalt layers in the test section.

The level 1 evaluation with GPR on the SR-70 test section

determined that 20.5% of the test section length contained the

problem locations with the fair subsurface condition and the rest

79.5% of the length had the good subsurface condition. Similarly,

28% of the test section length with was determined to have the fair

subsurface condition by the level 2 evaluation with surface

distress. The rest 72% of the test section without surface distresses

was estimated to have the good subsurface condition. In addition,

the PPT applicability on SR-70 test section was determined.

Considering the subsurface distress distribution analysis using

distress coverage of unit analysis length (DUCAL), the test section

was determined to be inadequate for the PPT application. The

case study confirms that the evaluation processes are applicable

and can help a consistent and rational decision making process for

project level or district level pavement preservation programs.

Implementation

The evaluation tool developed in this study can help achieving a

consistent and rational decision making process for project level

or district level pavement preservation program. The findings,

guidelines, iSub, and iMoisture will be introduced to the INDOT

pavement engineers in order to assist them with district level

preservation treatment practices. The details in the report and

software are intended for reference only, not as specifications or

design guidance. In the event that any information presented

herein conflicts with the Indiana Design Manual, INDOT’s

Standard Specifications or other INDOT policy, said policy will

take precedence and the software will be managed by the Asset

Preservation Engineer so that conflicts do not arise.
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1. INTRODUCTION

1.1 Research Background

The Indiana Department of Transportation (INDOT)
has been implementing a Pavement Preservation
Initiative (PPI) since 2009. PPI treatments for as-
phalt surface pavements include crack seal/fill, seal
coat, microsurface, ultrathin bonded wearing course
(UBWC), and 4.75 mm hot mix asphalt (HMA)
overlay. The plan for FY 2011 covered 1,726 lane
miles of 103 road projects using $ 30.7 million. The
basic and best practice of PPI is the application of the
right pavement preservation treatments for the right
pavement at the right time.

Most pavement preservation treatments involve
some sort of surface coating to the existing pavement.
Pavement surface sealing is one of the main purposes of
such a treatment, and results in extended life of the
pavement in most of cases. However, in rare cases
where the existing pavement is not structurally sound
due to high air voids (low density) and stripping of the
existing underlying pavement, the surface treatments
fail with delamination, potholes, cracks, etc. In addi-
tion, the surface treatment can accelerate the stripping
process of the underlying pavement layer. For example,
the SR-70 section with microsurface in the Vincennes
district had several small areas of localized failures due
to water stripping underneath the pavement, as of 2011.

Typical HMA in-place air voids (as constructed) are
approximately 8%. Improper constructions (e.g., tem-
perature control failure, improper compaction, etc.) and
materials can generate high air voids that provide easy
access for infiltration of water, resulting in eventual
stripping and raveling. Generally, high voids tend to
appear in joint areas due to improper compaction,
which leads to structure-related distress (e.g., fatigue
crack due to HMA dynamic modulus reduction) that
cannot be fixed by pavement preservation treatments.

According to the INDOT Design Manual, water
stripping consists of the debonding of the binder film
from the aggregate. Visible signs of water stripping
include surface delamination, raveling, pothole, or
surface discoloration. Water stripping is an aggregate-
dependent distress caused by a combination of heat,
pressure, and water. The recommended treatment for
stripping is to remove the stripped material by asphalt
milling and then overlay the milled surface.

INDOT currently does not have any guideline for
evaluating or identifying the potential for high air voids
and water stripping on existing asphalt pavements.
There is currently a need to develop methods for
evaluating subsurface condition of the existing asphalt
pavement to assess severity and extent of the physical
and mechanical distresses. The method can be used for
selecting the right pavement for PPI application.

1.2 Research Objectives

The primary objectives of the proposed research
project are as follows:

N To develop tools for identifying and quantifying the

subsurface distresses;

N To conduct a case study of the SR-70 section with

microsurface treatment for understanding its subsurface

condition and performance;

N To develop a methodology for evaluating the asphalt

pavement subsurface condition to determine the applic-

ability of pavement preservation treatments, including

seal coat, microsurface, ultrathin bonded wearing course,

and 4.75 mm asphalt overlay.

1.3 Report Organization

This report is composed of five chapters plus
appendices. Chapter 1 introduces the research and
presents the research needs and objectives. Chapter 2
summarizes the literature review of state practices of
Midwest region on limitations of the pavement
preservation regarding the existing pavement condi-
tions as well as available evaluation methods for water
stripping in asphalt pavement. Chapter 3 describes the
experimental study conducted for the evaluation of
subsurface condition test methods along with the
analysis. Chapter 4 discusses the guidelines of subsur-
face condition evaluation for pavement preservation
treatments. In addition, two software programs devel-
oped in part of guidelines are introduced. Chapter 5
presents the example application of the developed
guideline on SR-70 test section. The Conclusions from
this research and future research recommendations are
given in Chapter 6.

2. LITERATURE REVIEW

2.1 State Practice

Specifications and manuals of state departments of
transportation (DOT) in the Midwest region have been
reviewed in order to find limitations (e.g., water
stripping in existing pavement) in application of asphalt
pavement treatment to the existing pavements. The
reviewed states included Illinois, Indiana, Iowa,
Kentucky, Michigan, Minnesota, Missouri, and Ohio.
Specifically, limitations from pavement having struc-
tural or/and material damages (e.g., water stripping,
low density, etc.) were searched.

Overall, the states have similar types of treatments
for asphalt pavement; yet, their requirements regarding
the application vary by the pavement condition, traffic
volume, and construction. While weather limitation
for their construction is most commonly specified,
pavement condition is the least specified criteria. The
requirements are summarized in Table 2.1 and
Table 2.2, and findings indicate the following:

N Illinois DOT provides treatment selection guidelines for

each type of pavement condition/distress. The guideline

provides what specific type of treatment is recommended,

feasible or not applicable.

N Minnesota DOT has developed its own decision tree

which helps to determine the proper maintenance based
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on distress type, distress severity and pavement condition
index system.

N Most state DOT specification/manual determines the
suitability of each treatment by the presence of type of
distress and its severity. It is typically assumed that
pavements with high severity fatigue crack and rutting
are the indication of structural problems.

N Iowa DOT shows that limitations for different type of
treatment methods are provided in Standard Speci-
fication Division 23; however, limitations regarding
existing pavement conditions are not presented.

N It is interesting to note that crack sealing application
limitation of Ohio DOT is the expected amount of
sealing material. A pavement, which requires the use of
material in excess of 5000 lb per lane-mile, is determined
not to be suitable for such treatment.

N Most states specified that a pavement with a structural
problem is not suitable for any type of treatment and
surface distresses are used as an indicator for the
pavement structural condition. There are no specifica-
tions for the application limitation with any subsurface
condition evaluation (e.g., Falling Weight Deflectometer
(FWD), Ground Penetration Radar (GPR), etc.).

N INDOT specification and manual states existing pave-
ment condition limitations for all treatments except the
scrub seal; yet, it does not contain details regarding
measurement of the structural deficiencies or detection of
the water stripping.

In summary, the review shows that the existing
pavement condition is a major factor in determining the
applicability of treatment for asphalt pavement. How-
ever, the specifications/manuals do not contain in-
formation about the application limitation with the
pavement subsurface condition.

2.2 Evaluation Methods for Water Stripping

Guideline or detailed procedures for evaluation of
pavement structures in project-level are generally
available from most DOT (e.g., Ch. 52 Pavement
Preservation, Illinois DOT) and is also described with
detail in Ch. 5 Evaluation of Existing Pavement s for
Rehabilitation of Guide for Mechanistic–Empirical
Design (1,2).

TABLE 2.1
Existing pavement condition limitations for each type of surface treatments (Indiana, Illinois, Iowa, and Kentucky)

Indiana Illinois Iowa Kentucky

Crack Seal/Fill No existing pavement

condition limitations

Structural failures exist

Extensive pavement deterioration

Appropriate for cracks 0.25 in. to

0.75 in. (6 mm to 19 mm) wide

Not available Not available

Fog Seal Structural deficiencies Structural failures exist

Flushing/bleeding, friction loss, or

thermal crack

No existing pavement

condition limitations

Not available

Scrub Seal Not available Structural failures exist Not available Not available

(Sand Seal) Flushing/bleeding, friction loss, or

thermal crack

Seal Coat

(Chip Seal)

Structural deficiencies Not available No existing pavement

condition limitations

No existing pavement

condition limitations

Flush Seal Stripping of underlying

mixtures

Not available Not available Not available

Microsurface Large cracks or excessive

surface irregularities

such as shoving

Structural failures

High-severity thermal crack

Extensive pavement deterioration

Not available Not available

Stripping condition

Ultrathin Bonded

Wearing Course

(UBWC)

Ruts greater than

0.25 in

Severe distresses

Structural failures exist (e.g.,

significant fatigue cracking,

deep rutting)

Not available Not available

High severity thermal cracking

Extensive pavement deterioration

Profile Milling

(Diamond

Grinding)

Major distresses Significant faulting or other signs

of structural failure

Materials-related distresses

Not available Not available

Thin HMA Mill

and Fill (Thin

HMA Inlay)

Significant potholes

Major distresses

Not available Not available Not available

Thin HMA Overlay

with Milling

Significant potholes

Major distresses

Not available Not available Not available
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While stripping is also considered to be major factors
affecting the applicability of treatment by many state
agencies, its identification/evaluation methods are not
available. Initial literature review revealed that only
recently an attempt had been made to develop a
procedure to detect stripping in existing pavement was
conducted by Georgia Department of Transportation
(DOT). The limitations concerning identification of
stripping were also noted during a national seminar
(Moisture Sensitivity of Asphalt Pavements, Topic 7,
2003). In addition, a survey conducted by Colorado
DOT which included 50 states DOT revealed that
moisture sensitivity in asphalt pavement was not only a
local problem but a national issue.

An emphasis was put on the available identification/
evaluation methods for stripping in the following
literature review. The list of test methods are based

on Georgia DOT’s stripping identification manual as
they employed wide range of non-destructive test
(NDT) methods available. Finally, previous case
studies related to moisture damage were reviewed.

2.2.1 Field Sampling

Despite the introduction of advanced pavement
testing methods in recent years, asphalt core sample
provides more direct and reliable information about
pavement condition. The process of obtaining core data
consists of three main steps: (1) core sampling location
selection, (2) core extraction, and (3) core sample
testing. Core sample testing is further categorized into
laboratory experiments and visual inspections.

Various core sampling methods have been developed
and adopted by state DOTs, as coring is required in

TABLE 2.2
Existing pavement condition limitations for each type of surface treatments (Michigan, Minnesota, Missouri, Ohio)

Michigan Minnesota Missouri Ohio

Crack Seal/Fill Transverse cracks with

excessive secondary crack

around the main crack

No existing pavement

condition limitations

Cracks less than 0.1 in. wide or

greater than 1 in. in width

Pavements with significant

raveling

Pavements that requires the

use of sealing material in

excess of 5000 lb per lane

mile

Fog Seal Not available No existing pavement

condition limitations

Surface not porous enough

to absorb the emulsion

Not available

Scrub Seal

(Sand Seal)

Not available No existing pavement

condition limitations

Pavements with AADT more

than 7,500

Not available

Unstable pavements

Seal Coat

(Chip Seal)

No existing pavement

condition limitations

No existing pavement

condition limitations

Rough or uneven pavement Pavements that are not

structurally sound

Flush Seal Not available No existing pavement

condition limitations

Not available Pavements that are not

structurally sound

Microsurface Moderate to heavy surface

cracks

No existing pavement

condition limitations

No existing pavement

condition limitations

Pavements that are not

structurally sound

Ultrathin Bonded

Wearing

Course (UBWC)

Milled surface

Rutted pavements or

pavement exhibiting

distortion

No existing pavement

condition limitations

Any cracks greater than

1/4 in., which are not

cleaned and sealed

Patches and potholes exceed

moderate severity levels

Rutting exceeds 0.5 in.

Not available

Profile Milling

(Diamond

Grinding)

No existing pavement

condition limitations

Not available Not available Not available

Thin HMA Mill

and Fill (Thin

HMA Inlay)

Severely distressed pavement

Debonding

Pavement with excessive

amounts of crack sealing

No existing pavement

condition limitations

Not available Not available

Thin HMA Overlay

with Milling

Pavement with a weak base No existing pavement

condition limitations

Consolidation rutting

exceeding 3/8 in.

Not available

Pavements with a weak base
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part of pavement evaluation. The most widely used type
of core sampling method is to randomly select
pavement location for the core sampling.

2.2.2 Laboratory Test

Volumetric properties. The volumetric properties are
considered to be the most important factors affecting
the performance of asphalt pavement. Consequently,
the volumetric properties serve as both the most widely
used mix design parameter and specified pavement
acceptance criteria by state agencies. Furthermore, the
volumetric properties are imperative in pavement inve-
stigation and the selection of treatment accordingly (3).

Indirect tensile test. The tensile strength property of
an asphalt mixture gives an indication on the overall
strength of the mix and its resistance to crack. In
addition, the tensile strength ratio is a commonly used
indicator on the moisture damage potential of asphalt
mixtures (4). According to Aschenbrener in 1995,
AASHTO T283 was able to predict the stripping
potential of Colorado aggregates with reasonable
accuracy (5,6).

Kandhal, Lynn and Parker also reported that of all
the test methods available for evaluating moisture
susceptibility, AASHTO T283 (modified Lottman test)
is more widely used and considered to have relatively
better reliability than numerous other test methods (7).

Recent field studies by Lu and Harvey focused on
evaluating the long-term effectiveness of antistripping
additives under prolonged moisture conditioning situa-
tions. Two test methods were used: indirect tensile
strength ratio (TSR) test and flexural beam fatigue test.
The TSR test examines the strength loss of asphalt
mixes due to moisture, whereas the flexural beam
fatigue test examines the effect of moisture on the
fatigue response of asphalt mixes (8).

Water stripping test. Two standardized methods from
Montana DOT and Virginia DOT used for identifying
and quantifying water stripping using in-situ samples
were reviewed and summarized in Table 2.3 and
Figure 2.1. The methods require core samples to be
split diametrically for visual examination of the broken

faces; Montana DOT and Saskatchewan Highway and
Transportation procedures specify the use of the tensile
loading for splitting core samples.

2.2.3 Non-Destructive Test (NDT)

Ground penetration radar. Ground penetration radar
(GPR) is a high resolution geophysical technique that
utilizes electromagnetic radar waves to locate and map
subsurface targets, including pavement layer contacts.
GPR operates by transmitting short pulses of ele-
ctromagnetic energy into the pavement. These pulses
are reflected back to the radar antenna. The amplitude
and arrival time correspond to the thickness and
material properties of the pavement layers (9).

In a study by Minnesota DOT, it was found that the
effectiveness of GPR is highly affected by the equip-
ment used and experience of interpreters. Yet, the study
suggested that the GPR performed successfully on
detecting layer thicknesses, void locations, and strip-
ping locations (10).

Montana DOT (MDOT) also evaluated the feasi-
bility of GPR to a broader range of pavement
evaluation as the GPR is currently used in conjunction
with Falling Weight Deflectometer (FWD) only to
collect the layer thickness data. Based on an evaluation
of MDOT’s rehabilitation and reconstruction practices,
it was concluded that the GPR program can provide
useful information for the following applications: (a)
calculation of structural number for pavement recon-
struction and rehabilitation design; (b) insuring proper
depth control for mill and fill rehabilitation, and cold
in-place recycling; (c) improved structural capacity
calculation for network level evaluation; and (d) quality
assurance of new pavement thickness and density
(Montana DOT, GPR Analysis).

Furthermore, Leng in 2011 introduced a correlation
model which can predict the bulk specific gravity of
asphalt mixture from measurement by GPR. The model
was validated using data from a construction site and
showed that its accuracy was better than that of a
traditional nuclear gauge measurement (11).

The GPR equipment currently used by Indiana
Department of Transportation consists of one data
collection system (GSSI SIR 20), 2 ground-coupled
antennas (1.6 GHz and 2.6 GHz) and 1 air-coupled

TABLE 2.3
Core sample visual inspection guideline

Rating Montana DOT Virginia DOT

4 (Severe) Most aggregates are not coated Course Aggregate: .50%

Fine Aggregate: .40%

3 (Moderate) Moisture damage Course Aggregate: 30–49%

Some coarse aggregates are not coated Fine Aggregate: 25–39%

2 (Slight) Some fine aggregates are not coated Course Aggregate: 15–29%

Fine Aggregate: 10–24%

1 (Good) All aggregates are coated Course Aggregate: 0–14%

Surface is black Fine Aggregate: 0–9%
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antenna (1.0 GHz). The approximate depths of pene-
tration for each of these antennas are 6 in. 1 foot and
1.5 feet for 2.6 GHz, 1.6 GHz and 1.0 GHz, respec-
tively. In general, the depth of penetration is inversely
proportional to the frequency of an antenna. In
addition, INDOT maintains a vehicle reserved only
for GPR data collection that includes an independent
power source and electronic distance measuring instru-
ment (DMI) device.

Falling weight deflectometer (FWD). The Falling
Weight Deflectometer (FWD) is a rapid, nondestructive
means of determining a deflection basin response to a
measured dynamic load with amplitudes similar to those
imposed by trucks. The FWD consists of a mass mounted
on a vertical shaft and housed in a trailer that can be
towed by automobile or light truck. The FWD generates
an impulse load by dropping a mass from different
heights. By varying the drop height and mass, a different
force can be applied to existing pavements. The drop
weight falls directly onto rubber buffers that control the
load pulse time. The resulting impulsive load on the
pavement approximates a half sine wave. The loading
plate is equipped with a strain-gage type load cell to
measure applied force. The pavement surface deflection is
measured by electronic integration of the signals from
seven velocity transducers (geophones). Typically, one
geophone is located at the center of the load plate while
the remaining six are located along an array emanating
from the center of the loading plate. The FWD
equipment currently used by Indiana Department of

Transportation is Dynatest Model 8000. The typical
loadings used for the testing are 7,000 lb., 9,000 lb., and
11,000 lb.

Since pavement layers with stripping damage have
lower stiffness than sound asphalt pavement layers,
Georgia DOT selected FWD as one of their test
methods for stripping detection. When the FWD results
for locations exhibiting stripping in core samples was
compared to that for locations without any stripping,
some differences were observed. However, it was
concluded that the difference in layer stiffness was not
statistically significant (12).

Seismic test. Asphalt stripping will cause a decrease
in the modulus of the asphalt pavement. Seismic
methods measure travel time required for waves to
propagate to other points on the surface of the
pavement (12). Earlier studies conducted on suitability
of the test method on detection of stripping in asphalt
pavement demonstrated positive result (13).

A recent study, which was also conducted by
Nazarian and Celaya, also demonstrated its effective-
ness in identifying areas with less stiffness due to
stripping. Another advantage shown by the study was
that the method was able to detect both poorly
constructed layers and stripped layers. It was noted,
however, that the stripping located deeper than 10 in.
could not be detected.

Nuclear density gauge. Pavement density is used as an
indicator of abnormality in pavement (e.g., segregation

Figure 2.1 Core sample visual inspection guideline (Saskatchewan Highway and Transportation).
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and stripping). A nuclear gauge is used for density
measurements as a construction quality control tool
(14).

Georgia DOT evaluated the nuclear gauge in
identifying the segregation in asphalt pavements. The
evaluation result showed that significant differences
exist among density measurements for eight of nine
locations of segregation (15).

Thermal imaging. Infrared thermograph (IR)
technique has been evaluated as a tool for identifying
debonding of layers on bridge decks. The IR technique
requires environmental conditions with a high rate of
warming or cooling and assumes that stripped area has
higher specific heat, which means that more energy is
required to raise the temperature, or it will have more
energy to give up during a cooling cycle (12).

Thermal imaging equipment was field-tested on an
existing pavement to determine its overall effectiveness
in detecting distress. However, the thermal-imaging
equipment was found to be ineffective. The equipment
also did not detect any distress occurring below the
pavement surface. Furthermore, thermal images do not
yield quantitative results, making the inspection process
subjective (14).

A research by Sebesta and Scullion in 2002, along
with several studies performed by other agencies,
provided strong support to the capabilities of infrared
imaging in inspecting paving operations for uniformity.
However, previous study indicated that temperature
differentials in excess of 25 uF would be considered as
potential distress in the pavement (16).

2.2.4 Surface Distress Identification

Asphalt pavement with water stripping problems are
likely to affect the durability and often show other
signs, such as localized areas with surface distress,
including severe fatigue crack, potholing, raveling or
a greater frequency of transverse and block crack.
Kandhal and Rickards (17) observed that stripping in
overlays also resulted in ‘‘flushing’’ of stripped asphalt
binder to the surface and white staining of the surface
where fines in the asphalt concrete have been pumped
to the surface. The presence of stripping can also result
in more variability that might increase the potential for
rutting and/or localized longitudinal profile distortions
and/or increased rutting in localized areas.

National Center for Asphalt Technology (NCAT)
report, titled ‘‘Premature Failure of Asphalt Overlays
from Stripping’’, presents details of visual observation
of pavement distress from four case histories from
Pennsylvania, Oklahoma, and New South Wales in
Australia. Summary of findings from each site are the
following (17):

N Pennsylvania:

– All typical symptoms of stripping were presented as

white or gray spots, flushing, and potholes.

– The stripped asphalt binder started to migrate
upwards causing the flushing of the pavement surface.
A pothole then developed in the flushed area which
has almost bare aggregates underneath.

– For a certain section, no significant distress was
observed even though core sample displayed the signs
of stripping which had taken place.

N Oklahoma:

– Most of the potholes occurred in the wheel track of
the slow lanes and they were usually the result of
stripping of underlying layer.

– Big stains appeared initially when the stripping was
initiated in the underlying layer.

– Rutting and/or potholes were likely to be developed
due to stripping.

N South Wales, Australia:

– White stains on the surface indicated possible upward
migration of fines after stripping occurrence.

– Alligator type fatigue crack was likely the result of
stripping, which would lead to the development of
potholes.

2.2.5 Previous Case Studies

In order to effectively identify the cause of stripping
in pavement, forensic investigations were carried out by
applying a combination of existing technologies. This
chapter reviews three forensic investigations related to
moisture damage.

Forensic investigations of roadway pavement failures,
Texas (2007). Texas DOT had a formalized forensic
team approach, which consisted of nondestructive
testing, including, Ground Penetrating Radar (GPR)
and Falling Weight Deflectometer (FWD), Dynamic
Cone Penetration (DCP), coring, and laboratory
testing. The findings of the study were the following:

N A combination of GPR and FWD was extremely
successful at identifying stripping in the HMA pavement.

N The extent of stripping and high porosity that caused
delamination were detected by GPR and verified by core
samples.

N FWD data demonstrates that a pavement structure were
inadequate.

N GPR, laboratory density, and permeability tests indi-
cated the existence of moisture damage in the layer.

N Results of repetitive tri-axial test in laboratory revealed
that the stiffness and load carrying capability became
inadequate when base materials were exposed to
moisture.

Case study of an innovative forensic investigation of a
dramatic pavement failure, Canada (2007). Calgary,
Canada investigated surface and subsurface distresses
on one kilometer pavement section, which was heavily
damaged by an extreme rainfall. The investigation
employed Road RadarTM, GPR, and FWD. Additional
information was also gathered by detailed visual
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surveys and interviews. Results of the field inve-
stigation are the following:

N GPR was generally able to reveal all significant subsur-
face layers and anomalies; yet, GPR was determined to
be best used as an overview tool.

N Road Radar correctly measured layer thicknesses
although a classification of an individual layer material
type may cause some errors using this characteristic
material dielectric approach.

N FWD was used to confirm the analysis result of Road
Radar and coincided with the fact that no structural
deficiency existed.

Forensic investigation of pavement failures due to
moisture on interstate highways, Oregon (2002). Oregon
DOT investigated premature failures on five interstate
highway projects to determine conditions and mecha-
nisms. Field investigations as well as laboratory testing
of cores were used and the findings are the following:

N Visual examination of cores obtained from the projects
provided valuable information regarding layer depths and
conditions. However, the presence of moisture damage
was not always identified from these observations.

N Results of air void analyses of the pavement layers
correlated reasonably well with visual observations made
from the site. Based on these results, the threshold for
relatively high or low air void appeared to be about 7%

when measured by following ASTM D 6752.

2.3 Comparison of Non Destructive Testing Method for
Water Stripping Evaluation

Four factors, including applicability to the pavement
subsurface, data measurement type, reliability/accuracy
of measurement, and positive review were considered in
comparing NDT methods reviewed in this study.

N Subsurface evaluation: For the application of water
stripping evaluation as well as subsurface condition
evaluation, the proposed test method should be able to
applicable to the pavement subsurface.

N Measurement type: There are two types of measurement
methods; stationary and continuous. FWD uses a sta-
tionary data collection method as it needs to be stationed
at one specific location and typical data collection interval
is about 100 m (328 ft). Continuous data collection
method collects data with high frequency or minimal
interval between collections and GPR can perform 6 scans
per each foot at low speed (less than 10 mph).

N Reliability: The reliability factor determines how col-

lected data accurately represent the actual condition of
the pavement.

N Positive review: The positive review factor reflects overall

user satisfaction based on the past case studies.

For test method evaluation, all test methods
introduced in the literature review were evaluated and
scored based on four different factors. If a test method
meets the characteristics of each factor, one point was
given. For example, GPR is applicable to the pavement
subsurface evaluation then one point was given. The
results are summarized in Table 2.4. Finally, a sum of
all the points were taken for each type of test method
and compared. GPR and FWD had four and three
points, respectively, factors out of four, thus it was
concluded that they were most appropriate NDT
methods applicable for the surface condition evaluation
in asphalt pavements.

3. EVALAUTION OF SUBSURFACE CONDITION
TEST METHODS

A study was conducted on SR-70 to explore
applicable evaluation methods to the subsurface con-
dition investigation. SR-70 contained multiple potholes
and fatigue cracks started occurring after the construc-
tion of a microsurface treatment on full-depth asphalt
pavement. Cores were sampled from locations selected
using the Ground Penetration Radar (GPR), Falling
Weight Deflectometer (FWD), surface distress evalua-
tion. Finally, the validity of the results of surface
distresses and NDT test were evaluated by comparing
them to the core laboratory test results. In addition,
correlations among test results were also analyzed.

3.1 Evaluation Process

An overall experimental plan, as illustrated in
Figure 3.1, is described below:

N Collect general site information: This step involves the

collection of information regarding location, pavement
history, design values, and any existing data.

N Site survey &investigation: This step includes the site visit
to obtain most current information of the pavement,

including surface condition, drainage system, and nota-
ble feature in surroundings.

N Non-destructive testing: This step involves non-destruc-

tive testing (i.e., GPR and/or FWD) performed on a

TABLE 2.4
Characteristics of available non-destructive methods

Name SubsurfaceEvaluation Continuous Measurement Reliability Positive Review Overall Score

GPR 1 1 1 1 4

FWD 1 0 1 1 3

Seismic 1 0 1 0 2

Nuclear Density Gauge 1 0 0 0 1

Thermal Imaging 0 1 0 0 1
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specific section of the test road, where core samples are
obtained. In addition, surface distresses are individually
examined to assess severity and extent (coverage).

N Core location determination and core sample collection:
This step involves analyzing data collected in the
previous steps, and determining the required number of
core samples and sampling location. This step is critical
as feasible number of cores to be sampled and tested is
limited while various factors, including surface distress
location and NDT data, should be considered. Finally,
core samples are collected.

N Laboratory test: This step involves conducting labora-
tory experiments on collected core samples, namely
volumetric property test (Bulk specific gravity (Gmb)
and theoretical maximum specific gravity (Gmm)) and
indirect tensile test. Core samples are also examined for
the severity of water stripping.

N Correlation analysis: This is a validation process using

the results of surface distresses, NDT test and core

laboratory test. In detail, the factors to be examined are

the following:

– Air voids, indirect tensile strength, or water stripping

severity of core specimens vs. GPR or FWD analysis

data.

– Air voids, indirect tensile strength, or water stripping

severity of core specimens vs. surface distress analysis

data.

– Surface distress analysis data vs. GPR or FWD

analysis data.

N Correlation analysis: This is a subsurface condition

evaluation process using the results of laboratory test

results.

Figure 3.1 Diagram for experimental plan.
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3.2 Site Information

The case study road is located on SR-70 in the
INDOT Tell City Sub-district near Tell City, Indiana.
The SR-70 is a two-lane highway with a 10-in. full-
depth asphalt. The approximate extent of the project is
shown in Figure 3.2 and the project section is set to be
0.25 mile east of junction with US-231 to SR-66,
reference points (R. P.) 0.5 to 9.75, respectively. Weigh
in motion (WIM) data from INDOT shows that the
traffic volume through the test sections in 2006 was
approximately 1,743 vehicles per day with trucks
counting about 8%.

The climate of the region could be considered as a
warm, semi-humid and continental type. Although it
has four distinct seasons, mild winters and hot and dry
summers are often observed (Some characteristics of
southern Indiana climate (18)). The climatic data,
including average daily temperature and precipitation
from August 1, 2008, through August 1, 2012, is
presented in Figure 3.3.

Rehabilitation history shows two occasions of
activities since the original construction of SR-70,

which are the resurfacing and the microsurfacing. The
test section was milled and resurfaced in 1992,
accompanied by the expansion of the pavement width
from 20 ft to 24 ft. According to the contract docu-
ment, the 1 in. of the existing surface was milled and
intermediate and surface course were laid at 220 lb/
SYD and 110 lb/SYD, respectively. AADT for 1987
was recorded as 2022 and projected AADT for 2007
was 3120. The truck traffic data was not available.

The construction of microsurfacing on SR-70 was
started on August 7, 2008, and concluded on August
11, 2008. The contractor applied the microsurfacing
with the application rate ranging from 22 lb/SYD to
33 lb/SYD after patching and crack sealing were
completed on the existing pavement.

3.3 Test Methods

3.3.1 Site Survey and Surface Distress Investigation

To evaluate pavement surface distresses, digital im-
ages of pavement surface were collected and analyzed.

Figure 3.2 Location of the case study road.

Figure 3.3 Climate condition of Tell City Sub-district (National Climatic Data Center).
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A digital image acquisition system was developed using
a digital camera mounted on a vehicle with a distance
measuring instrument (DMI) unit connected to the
digital camera, as shown in Figure 3.4. The digital
camera, Nikon D300 providing 4,288 by 2,848 pixels
color images, was mounted at 15 ft high from the
ground. This setup covered an area of 12 ft by 9 ft.
The digital camera periodically took digital images of
the pavement surface ahead of the vehicle as the vehicle
travels along the lane. A digital image acquisition
system, which is integrated with a DMI unit, provides
uniform coverage of pavement surface regardless of the
vehicle traveling speed.

Types and extents of surface distresses were visually
analyzed using the digital images of the pavement
surface and the FHWA distress identification manual
(19). The extents of distress should be measured by
either linear distance (ft) or area (ft2) depending on the
types of surface distresses. The extents of distresses
were measureable since all images had the uniform
coverage area of 12 ft by 9 ft.

3.3.2 Non-Destructive Test

Ground penetration radar (GPR). The GPR test was
conducted using air-coupled antenna (1.0 GHz) in
August 2011 on right and left wheel paths. The
measurement interval was 6 in.

Falling weight deflectometer (FWD). FWD tests were
conducted in 2008, 2009, and 2010 in order to evaluate
structural adequacy of the test section. Tests were
conducted in the driving lanes in both directions

at 328 ft intervals. Based on previous INDOT ex-
periences, a minimum of 16 testing locations per mile is
required to provide statistically sound analysis. The 11-
kip load level was used for the testing. For the
calculation of stiffness and deflections, ELMOD6, a
software system developed by Dynatest, were used.

3.3.3 Laboratory Test on Cores

Cores sampling. CA test section in the test road was
first determined before determining the core sampling
locations. The changes of surface condition over time
were observed from the analysis of pavement surface
digital images, as shown in Figure 3.5. Numbers on the
top in the plot shows R. P. and lines at each side of
pavement represent roads connected to the test road
(SR-70). Top lane and bottom lane separated by thick
yellow line in the middle represents west bound and
east bound, respectively. Green dots indicate surface
distresses (i.e., potholes and patches) identified in
October 2010 field survey, while red dots indicate
newly formed distresses in between October 2010 and
August 2011 field survey. As a result, the 2 mile section
between R.P. 3 and R.P. 5 was subjected for the core
sampling location as the test section includes both the
most and least surface distresses occurrence locations.
In addition, constraints on traffic control and time
required for traveling between core sampling locations
were also considered in the process.

The 2 mile test section was evaluated and categorized
into two areas representing ‘‘good’’ and ‘‘poor’’ condi-
tions based on GPR and FWD measurements. Core
sampling locations were then determined based on the
subsurface (i.e., GPR and FWD measurements) and
surface distress condition (e.g., crack, potholes and
patch).as subsurface condition indicators which are to
be introduced in a following chapter in detail. Total of
28 cores were sampled from the test section (14 cores
from the right or left wheel path and 14 cores from
between wheel paths). The final locations of core
samples are summarized in Table 3.1. Each core sample
was given identification number which is a combination
of number and letter (R for right, C for center, and L
for left) for wheel path on which core was obtained.

Laboratory sample preparation. The core samples
were prepared for the laboratory testing once arrived in
the laboratory. Each core sample was washed to
remove excess aggregate or any other materials
introduced during coring or handling, and dried in
the environmental chamber at room temperature of 77
uF. Once the core sample was sufficiently dry, each one
was visually examined for interfaces, thickness of each
layer, and visible distress.

Each core sample was then cut using a circular saw
based on the layers identified from the visual inspec-
tion. The physical dimensions of each core layer
samples were measured to the nearest 0.1 in. Once all
the measurements were completed, the core layer
samples were again placed in the environmental

Figure 3.4 Surface distress survey vehicle.
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chamber for the final drying process before the
laboratory testing.

Bulk specific gravity (Gmb). The measurement of bulk
specific gravity (Gmb) is the basis for the volumetric
calculation, namely air voids, voids in mineral ag-
gregates, voids filled with asphalt and percent maxi-
mum density. Thus, it is imperative to have accurate
measurement of bulk specific gravity. The mea-
surement of bulk specific gravity has been based on
the concept of water displacement, using samples which
are assumed to be in saturated-surface dry condition.
However, a core sample with larger air voids (e.g.,

coarse-graded mix or sample with water stripping
damage) can negatively affect the measurement pro-
cess as water can quickly drain from the core sample
once removed from the water bath (19).

Unlike core samples from newly constructed pave-
ments, samples obtained from the existing pavement
may show signs of various types of distresses, and water
stripping is one of them. Asphalt mixes with stripping
damage are generally recognized to have high air voids
through water retention. Previous evaluations from
NCAT and Florida DOT indicated that the Corelok
procedure is a better measure of bulk specific gravity,
especially for mixes prone to high levels of water
absorption. Accordingly, this study utilized the Corelok
with AASHTO T331 for the measurement of bulk
specific gravity for each core layer sample (20).

Theoretical maximum specific gravity (Gmm). The
theoretical maximum specific gravity (Gmm) was
determined by AASHTO T209. The standard test is
to be performed with particles of the sample with
complete coating, which is essential for accurate
measurement as aggregate particle should not absorb
any water during the test (22). However, the aggregate
particle samples to be tested in the study were obtained
from field core samples. The sample contained cut
aggregates on the surface of the core, which was prone
to the water absorption.

The specimen for the maximum specific gravity test
was prepared by first having core samples heated in the
oven by 158 uF. Once the specimen became sufficiently
workable, outer portion of the core sample containing

TABLE 3.1
Locations of core samples with labels

R. P. Left Wheel Path Center of Lane Right Wheel Path

3.227 3L 3C

3.317 11L 11C

4.275 35L 35R

4.282 23C 23R

4.55 38C 38R

4.65 40C 40R

4.926 26C 26R

3.004 24C 24R

3.198 7C 7R

3.387 21C 21R

3.515 25C 25R

3.543 29C 29R

3.551 12L 12C

3.697 13L 13C

5.108 1L 1C

Figure 3.5 Visual analysis results from 2010 and 2011 on potholes and patches.
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aggregates with cut surfaces were removed, as shown
in Figure 3.6. Then, the rest were separated without
fracturing any aggregates until there were no aggregate
particles larger than 0.25 in.

Indirect tensile test (IDT). The indirect tensile test is
performed by loading a cylindrical specimen with a
single or repeated compressive load which acts parallel
to and along the vertical diametral plane. This loading
configuration develops a relatively uniform tensile
stress perpendicular to the direction of the applied
load and along the vertical diametral plane which
ultimately causes the specimen to fail by splitting along
the vertical diameter, as shown in Figure 3.7. A curved
loading strip is used to provide a uniform loading width
which produces a nearly uniform stress distribution.

The calculation of the TSR in accordance to
AASHTO T283 is the standard method under the
Superpave mix design system to evaluate a mixture’s

moisture sensitivity (6). The standard test method uses
a sample set, which is conditioned by saturation and
immersion to simulate the moisture damage of a
mixture in field. The indirect tensile strengths of the
unconditioned and conditioned sets are then compared
to evaluate the moisture damage induced by condition-
ing. However, this study was not to examine the
moisture sensitivity of a mixture and there was no fresh
mixture sample (e.g., as-constructed sample) which
needs to be compared to. Thus, only the indirect tensile
test was used for the assessment of each core layer
specimen’s condition.

Specimens completed with the bulk specific gravity
measurement were tested by IDT and the specimen
placed in the IDT equipment is shown in Figure 3.7. A
load was applied to the specimen at a constant rate of 2
in. (50 mm) per min. The maximum load was recorded,
and the load continued until the failure of the specimen.
The tensile strength of the specimen was determined

Figure 3.6 Sample preparation process for Gmm measurement: (a) Sample heating in the oven at 158 uF; (b) Separation of
uncoated aggregates from coated aggregates.

Figure 3.7 IDT setup: (a) IDT chamber; (b) specimen after IDT test.
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using Equation 3.1:

S~
2|p

p|D|T
ð3:1Þ

Where: S 5 Tensile strength of the specimen (psi)

p 5 Peak load (lb)

D 5 Specimen diameter (in.)

T 5 Specimen thickness (in.)

Water stripping measurement. The severity of water
stripping was quantified by Digital Image Analysis
(DIA). Asphalt mix is primarily composed of asphalt
and aggregate. The aggregate should be fully coated
with asphalt in the good condition mix. Literatures
revealed that typically, the water stripping severity was
evaluated by calculating the stripped area over the total
area. However, this evaluation method does not con-
sider the change of aggregate or asphalt volume
fractions by different mixture types. Thus, the same
size of uncoated area in a sample with higher aggregate
volume fraction or lower asphalt volume fraction should
result in lower severity than that with lower aggregate
volume fraction or higher asphalt volume fraction. A
mixture with the more asphalt volume fraction has the
less aggregate volume fraction. In addition, generally,
the larger nominal maximum aggregate size (NMAS)
shows the less asphalt fraction. For example, the typical
effective binder content by volume in asphalt mixtures
used in Vincennes district from 2005 to 2007 are 8.69%,
9.53%, 10.66%, and 11.61% for 25.0 mm, 19.0 mm,
12.5 mm, and 9.5 mm NMASs, respectively (23). Ac-
cordingly, since the stripping can only occur to the
coated aggregate, the severity of water stripping was
defined as percent uncoated aggregate volume over total
aggregate volume in a sample in this study.

Accordingly, the DIA for the water stripping mea-
surement requires two images including cut-face and
split-face in a sample. The cut face and the split-face are
used for quantifying the aggregate fraction and the
uncoated aggregate fraction, respectively.

A uniform image quality is a critical factor in the
DIA. However, controlling conditions for image acqui-
sitions in different projects is not simple in practice,
which results in image by image quality variation.
Nevertheless, a uniform image quality for a pair of the
digital images (i.e., cut-face and split-face) in a sample
for a project is easily obtainable. The DIA with the pair
images can minimize quality variation-related factors
from project by project or laboratory by laboratory on
the stripping measurement since the measurement is
relative quantification in a sample.

Primary process for DIA for the calculating the
percentage area covered with uncoated aggregate and
covered with aggregate are identical except the type of
image used:

1. Digital Image Collection: Digital image of the cut-face of

core specimen before IDT and the split-face after IDT

are required for the DIA. The image should contain only

the specimen surface without any back ground, as shown
in Figure 3.8 and Figure 3.9.

2. For the analysis with the split specimen surface image,
any one face of the split surfaces can be used since they
are symmetrical. Minimum resolution required for the
image is 320 by 240. A pixel of digital image for 6 in. by 2
in. sample size With a resolution of 320 by 240 (i.e., the
minimal resolution which any digital camera) represents
less than 0.02 in. of width in a specimen. Considering
aggregate No. 35 sieve size is 0.0197 in., the area
represented by each pixel in minimal resolution is deemed
to be sufficient for the measurement.

3. Digital Image Analysis (DIA): Color information on each
pixel is transformed into HSV (i.e., hue, saturation, and
value) in an RGB (i.e., red, green, and blue) color model.
To be specific, value in HSV model represents ‘‘bright-
ness’’. Thus, value indicates an extent of light reflection on
the specimen surface. The specimen image contains only
two material types, namely asphalt and aggregate.
Generally, the light reflection of asphalt material has
much lower value than that of aggregate and the light
reflection of asphalt material is more uniform. Ac-
cordingly, the percentage of area represented by either
aggregate or uncoated aggregate can be measured by
identifying and quantifying pixels representing asphalt
area or aggregate area in the surface.

4. Quantification: The severity of water stripping is
presented as a percentage for amount of pixels identified
as uncoated aggregate (Awsa) in total amount of pixels
identified as aggregate (Aag). The water stripping
severities (WS) were calculated using Equation 3.2.
Figure 3.8 and Figure 3.9 show examples of DIA images
from this study. It should be noted that the DIA cannot
differentiate uncoated aggregate surface from crushed
aggregate surface by the result of indirect tensile test.

WS~
Awsa

Aag

|100 ð3:2Þ

3.4 Test Result

3.4.1 Surface Distress Survey

Surface distresses on the test section were examined
and categorized in terms of distress type: longitudinal
crack, transverse crack, fatigue crack, and pothole/
patch, as shown in Figure 3.10. The longitudinal crack
was quantified with respect to locations in transverse
direction (i.e., left wheel path, center of lane, and right
wheel path) and the crack distribution is summarized in
Figure 3.11. If a longitudinal crack is formed diagon-
ally over the entire lane width, then the crack length
was separately measured at each location. In total,
807 ft, 130 ft and 1,383 ft of longitudinal crack on left
wheel path, center of lane, and right wheel path,
respectively, were identified over the test section. The
longitudinal cracks in most cases occurred along both
wheel paths. Almost all longitudinal cracks located in
left wheel path and center of lane were observed in the
first 1 mile of the test section.

Pothole/patch, transverse crack, and fatigue crack
were also measured summarized in Figure 3.12.
Generally, pothole distribution overlaps the patch
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distribution in the test section. All potholes/patches
were found between R.P. 4 and R.P. 5. The extent of
transverse crack was the number of transverse crack in
each 100 ft unit interval section. Transverse crack,
which were shorter than a half of lane width (, 6 ft)
was disregarded. Although transverse cracks were
presented over the entire test section, slightly larger
number of them occurred in the first 1-mile section
(R.P. 3-R.P. 4). In addition, the distribution of the
fatigue crack also showed similar trend as most of
fatigue cracks occurred in the first 1-mile section. It
should be noted that the distribution of pothole and
patches was very different from that of transverse and
fatigue cracks.

Distress coverage on pavement can be a good
indicator to understand the extent of distress. Typi-
cally, the coverage can be defined as the length or area
covered by distress in a given test section or the crack

space. The total extent of longitudinal crack was
divided by 10,560 ft (i.e., the total length of 2-mile test
section), and the total extents of fatigue crack, pothole,
and patch were divided by 126,720 ft2 (i.e., the total
surface area of 2-mile test section) to obtain their
coverages. The coverage of transverse crack could be
expressed as its crack space assuming the cracks are
evenly distributed along the 2-mile test section. The
coverage of each type of distress was calculated and is
summarized in Table 3.2.

In this study, the length-based coverage was uni-
formly used in order to add up all the extents of distress
types and to use a single coverage value representing a
pavement condition. Specifically, the length-based
coverage can be defined as the longitudinal length
covered with distress in a given test section and
add effective length for the length-based calculation
of transverse crack and pothole. Consequently, the

Figure 3.8 Images from DIA process for aggregate area calculation: (a) original image; (b) original image processed for DIA; (c)
identified aggregates; (c) identified asphalt and air voids.
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length-based coverage calculation of longitudinal crack
remained same. In case of fatigue crack and patch, only
the longitudinal length of each distress area was
included and divided by the total length instead of the
area. For the length-based coverage calculation of
transverse crack and pothole, it was assumed that each
distress has an effective length of 20 ft. For example, 83
transverse cracks were converted into 1,660 ft (83 6
20 ft) and the length-based coverage was then calcu-
lated to be 15.7% (1,660 ft divided by 10,560 ft).
Finally, the total length-based coverage of surface
distress in percentage was 28%. In other words, 72% of
the test section did not display any signs of surface
distress. In case of multiple surface distresses presented
in the same section, it is included in the calculation once
thus prohibiting the same section from being included
multiple times.

3.4.2 Non-Destructive Test

Ground penetration radar. GPR recorded reflected
signals (i.e., amplitude over travel time) from the

pavement surface and subsurface along the test
section. The layer interface locations were identified
with GPR pulse wave velocities at relatively high
amplitudes along the GPR measurements.

Figure 3.13 shows relatively high amplitudes depths
with respect to measurement points presented as trace.
The measurement interval was 6 in. The average
interface depths were 7 in. and 10 in. The layer
thicknesses were 7 in. and 3 in. for layer 1 and layer
2, respectively. It should be noted that there was a slight
difference between the GPR determined layer thickness
and visual observed thicknesses from core samples
because of variations from pavement construction and
from a GPR result interpretation. It should be noted
that L1 and L2 correspond to a combination of Layer 1
and Layer 2 and to Layer 3 in the core visual
observation, respectively.

Physical conditions of layers were evaluated by
investigating the dielectric constant distribution in each
layer. In general, a sound-condition layer has a re-
latively uniform dielectric constant because of its ma-
terial homogeneity along the measurements. However,

Figure 3.9 Images from DIA process for uncoated aggregate surface area calculation: (a) original image; (b) identified uncoated
aggregate image; (c) identified asphalt image.
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dielectric constants with presence of voids or water
have high variations.

Generally, the distribution of dielectric constant is
not normally distributed. This abnormal distribution
limits the most outlier methods for inhomogeneity
detection. Therefore, In consideration of the limitation,
a detection method with skewed distributions devel-
oped by Huber and Van der Veeken (24) was employed
to identify problem locations in the test section.

Table 3.3 shows the coverage of problem locations
for L1 and L2 by wheel path. In order to have a
combined coverage for both wheel paths and for L1
and L2, the coverage was combined by adding the
coverage of wheel paths and L1 and L2 together
considering the overlapped locations. The overlapped
locations were a certain sections where both wheel path
were determined to be problematic. Consequently, the
combined coverage should be counted only once and
was less than the sum of the coverage of both wheel
paths. The combined coverage for left and right wheel
path at L1 and L2 were 13.6% and 9.6%, respectively.
In a similar manner, the coverages of L1 and L2 were

combined. The total coverage for the test section
combining both wheel paths and L1 and L2 was
20.5%. Thus, the non-problem location had 79.5%

coverage.

Falling weight deflectometer. FWD results including
surface deflection, subsurface deflection, and stiffness
on the test section are presented in Figure 3.14. The
average stiffness over the test section was 297 ksi with a
standard deviation of 181 ksi. The average deflections
of surface and subsurface were 12.8 mils and 2.5 mils
with standard deviation of 3.22 mils and 0.64 mils,
respectively.

In order to validate FWD results using the subsur-
face condition, FWD test spots located in less than 30 ft
away from the core locations were identified. Then, the
core samples were divided into two groups: intact and
damaged sample groups as explained in the Visual
Observation chapter. The significance of difference
between the groups was tested and its results are shown
in Table 3.4. If the significance level of 5% is assumed,
it can be concluded that FWD results on locations of

Figure 3.10 Surface distresses on the test section: (a) patch and core holes; (b) pothole; (c) fatigue cracks with core holes; (d)
fatigue cracks.
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the intact samples are not significantly different from
that of the damaged samples.

Another validation for FWD results was conducted
using surface distresses on the test section. The surface
distress survey in Chapter 3.3.1 resulted in that the
pavement section between R.P. 4 to 5 contained more
potholes and patched areas while the pavement section
between R. P. 3 to 4 had higher number of longitudinal
and fatigue cracks. The average FWD stiffness and
surface deflection were 247.9 ksi and 12.86 mils and
283.8 ksi and 12.06 mils for the first and the second 1
mile sections, respectively. Differences in the stiffness
and the deflection between the sections were determined
to be statistically insignificant. Consequently, the FWD
results have a lack of correlation with the surface
distresses.

3.4.3 Laboratory Test

Visual observation. Visual observation was made
on core samples to identify layer thicknesses and
to investigate any damage on them. As shown in
Figure 3.15, the thickness of full depth asphalt was
approximately 12 in. Three interfaces were identified in
most core samples by visual inspection. The layer
interface depths from their surface were approximately

1.5 in., 6 in., and 9 in. These layers were labeled with
Layer 1, Layer 2, and Layer 3 from the surface. Layer 1
included a microsurfacing layer and a HMA surface
course placed in 1992.

The visual observation found 14 out of 28 core
samples were damaged. There were two typical layers
with damage, which are near surface and approximately
4 in. to 6 in. deep as shown in Figure 3.15. The
probable causes of damage were structural defect,
material problem, or over-stress from the coring
process. This study assumed the influence of coring
process is minimal.

Figure 3.16 presents the typical cut-faces of layers.
Aggregate sizes of layers were determined to be
9.5 mm, 19.0 mm, and 25.0 mm NMASs for Layer 1,
Layer 2, and Layer 3, respectively. There was an
unidentified layer beneath Layer 3 with gasoline-like
smell. This layer was excluded in this study because of
its severe disturbance from the core drilling process.

Air voids. Amount of air voids in asphalt mix is
important information for interpreting its mix
condition. Percent air voids were calculated using
Gmm and Gmb of cores. Gmm for each layer was
obtained as 2.45, 2.49, and 2.44 for Layer 1, Layer 2,
and Layer 3, respectively. It should be noted that the

Figure 3.11 Extent of longitudinal crack by location: (a) left wheel path; (b) center of lane; (c) right wheel path; (d) total extent of
longitudinal crack.
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measured 2.44 Gmm for Layer 3 (25.0 mm NMAS) was
remarkably lower than 2.514 Gmm that for the typical
Indiana 25.0 mm NMAS mix from 166 Indiana Job
Mix Formulas used between 2005 and 2007.

Figure 3.17 (a) shows air void distribution in terms
of depth over the 2-mile test section. Air voids in
percentage points are displayed in different colors. The
blue and red color corresponds to 0% and 14% air
voids, respectively. It should be noted that all plots in
Figure 3.17 are not to scale; x-axis is in mile and y-axis
is in inch. The surface layer has higher air voids then
other subsequent layers and air voids generally decrease
as layer depth increases. Throughout the entire section,

higher air voids were only observed in Layer 1, and
there are three locations with higher air voids, which
are located around R.P. 3, 3.5 and 4.75.

Table 3.5 presents average air voids in terms of depth
at wheel paths. The core samples from right wheel path
showed higher air voids then that from left wheel path
in all layers. However, a t-test with a 95% confidence
interval showed that air voids difference between wheel
paths were not statistically different except Layer 1.

Indirect tensile test. A distribution of IDT tensile
strengths in the test section is presented in Figure 3.17
(b), which is not drawn to scale. The color blue and red

Figure 3.12 Extent of surface distress by location: (a) pothole/patch; (b) transverse crack; (c) fatigue crack.

TABLE 3.2
Summary of distress extent and coverage over the test section

Distress Type Total Extent Coverage Coverage (length-based)

Longitudinal Crack 2,320 ft 22.0% 22.0%

Fatigue Crack 795 ft2 0.6% 2.5%

Transverse Crack 83 127 ft (crack to crack space) 15.7%

Pothole 11N, 79 ft2 0.1% 1.51%

Patch 3, 142 ft2 0.1% 0.4%
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corresponds to 0 psi and 239 psi strength, respectively.
A core layer sample with tensile strength of 0 psi
denotes one with damages within the layer. Overall,
Layer 1 showed higher tensile strength than that of
Layer 2 and 3; however, tensile strengths in Layer 2
and 3 were more uniform throughout test section.
Additional observation made was that Layer 1 around
R. P. 3.5 and 4.8 shows relatively high air voids and low
tensile strength.

Table 3.6 presents average tensile strengths in terms
of depth at wheel paths. The deeper layers had the
lower tensile strength at both wheel paths. A t-test
result showed that tensile strengths between the wheel
paths were not statistically different in all layers.

Figure 3.18 shows correlation between air voids and
tensile strength of core specimen for each layer. Layer 1
and Layer 2 showed the higher air voids showed the
lower tensile strength except for Layer 2. Overall
correlation showed that the tensile strength was
inversely proportional to the air voids with poor

correlation coefficient (R2 5 0.155). This concludes that
the air voids as a physical property are not a main
factor affecting the tensile strength as a mechanical
property.

Water stripping. The water stripping test using DIA
(details in Ch. 3.3.2) was applied to the core samples,
which were damaged and broken from the coring
process explained in the Visual Observation Chapter. It
was found that all damaged faces of the samples
showed the signs of water stripping and the water
stripping test resulted in the severity range from 18% to
53%, as shown in Figure 3.19 and Table 3.7. The
results confirm that the test section of SR-70 has the
water stripping problem. It should be noted that ‘‘X’’
and ‘‘O’’ represent sample locations with and without
water stripping, respectively in Table 3.7.

Additional water stripping test were carried out on
split faces of IDT specimens and resulted in that the
average severities were 14.5%, 37.2%, and 32.2% for
Layer 1, Layer 2, and Layer 3, respectively, as shown in
Table 3.8. The severity ranged from 3.5% to 64%. The
water stripping damage was found to be more severe in
Layer 2 and 3, as shown in Figure 3.17 (c). It also
shows that high severities of water stripping are only
shown in certain depths throughout the test section,
which are 2 in., 4 in. and 7 in. deep. When compared
the location of high severities of water stripping to that
of higher air voids and low strength; however, it did not
show good correlations.

The observation showed that the samples from right
wheel path showed the higher severity in all three

Figure 3.13 GPR layer interface detection result.

TABLE 3.3
Summary of problem location coverage over the test section

Coverage

Left Wheel

Path

Right Wheel

Path Total

L1 (Layer 1 +
Layer 2)

7.25% 4.99% 11.81%

L2 (Layer 3) 9.35% 8.15% 16.96%

Total 13.6% 9.95% 20.5%
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Figure 3.14 FWD test results from June, 2010.

TABLE 3.4
Statistical comparison of stiffness and deflections

Stiffness, ksi Surface D, mils Subsurface D, mils

Avg. (Std.) Sound 306 (229) 12.7 (2.52) 2.5 (0.62)

Fail 251 (73.8) 13.1 (1.62) 2.5 (0.85)

Overall Avg. (Std.) 297 (212) 12.8 (3.22) 2.5 (0.64)

t-Test (p-value) 0.53 (0.6) 0.25 (0.8) <0 (1.0)

Results Not different Not different Not different

Figure 3.15 Core samples with damage: (a) mid-depth damage; (b) near surface damage.
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layers. However, t-test showed that they were not
statistically different in all three layers, as shown in
Table 3.8. Based on the definitions of water stripping
severity levels of Virginia DOT, a percentage of
stripping higher than 50% is considered to be most
severe level. This case study had four samples with the
severity over 50%. Figure 3.20 shows two core layer
specimens as examples with the water stripping severity
of 3.5% and 64%, which were the lowest and highest
severities observed from core layer samples, which were
damaged and broken.

Correlations among water stripping severity, air
voids, and tensile strength were examined as shown in
Figure 3.21 and Figure 3.22. When the water stripping
severities are compared to tensile strengths, Layer 1,
Layer 2, and overall layers showed inverse proportion
except Layer 3. However, R2 values for all three layers
were too small to be significant. In the same manner,
the water stripping was also compared to air voids
and only Layer 1 showed good correlation. Moreover,

overall layers showed very poor correlation between
them. Therefore, it can be concluded that there were
insignificant correlations among the water stripping
severities, air voids, and tensile strengths in the
condition used in this study.

3.5 Evaluation of NDT Test Methods

This chapter mainly presents multiple comparisons
among laboratory test results (i.e., air voids, tensile
strength, and the water stripping severity) on core
samples, surface distresses, and NDT results.

3.5.1 Problem Location Determination Based on
Laboratory Results

A single GPR measurement at a certain location does
not provide interpretable information. Therefore, a
relative comparison with a binary logistic approach in a
series of GPR measurements was used for detecting

Figure 3.16 Cut-faces of layers: (a) Layer 1 (9.5 mm); (b) Layer 2 (19.0 mm); (c) Layer 3 (25.0 mm); (d) Unidentified layer.
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Figure 3.17 Core layers laboratory test results over test section: (a) air voids; (b) tensile strength; (c) water stripping severity.

TABLE 3.5
Average air voids in terms of depth at wheel paths and statistical
comparison between wheel paths

Layer Overall

Left Wheel

Path

Right Wheel

Path P-value

1 11.42% 9.75% 12.08% 0.007

2 7.91% 6.99% 8.34% 0.26

3 4.76% 4.00% 5.02% 0.27

TABLE 3.6
Average tensile strengths in terms of depth at wheel paths and
statistical comparison between wheel paths

Layer Overall

Left Wheel

Path

Right Wheel

Path P-value

1 125 psi 146 psi 117 psi 0.59

2 157 psi 143 psi 164 psi 0.14

3 109 psi 103 psi 124 psi 0.14
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Figure 3.18 Air voids vs. tensile strength: (a) Layer 1; (b) Layer 2; (c) Layer 3, (d) overall layers.

Figure 3.19 Damaged faces in core samples: (a) 18% severity; (b) 53% severity.
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pavement locations having subsurface problems as
explained in Ch. 3.4.2. Accordingly, to make fair
comparisons and to verify each test used in this study,
the binary logic was used for categorizing the labora-
tory test results into two groups for defining sound and
problem core samples (e.g., high air voids content, low
tensile strength, high water stripping severity).

High air voids. The air void distribution varies in
terms of layers due to difference in types of asphalt mix
and subsurface stress distribution from traffic loadings,

as shown in Figure 3.23. Thus, the air voids within each
layer were evaluated to find its abnormality and to
define a significance level that may potentially have
problems in pavement performance. Even though 5% is
a widely accepted significance level in statistics, this
study selected 10% because of lack of data from a
limited number of samples at 5%. In other words, a
sample having air voids above 90th percentile of its
distribution represents a poor performance sample.

Table 3.9 shows core sample locations having high
air voids in the test section for L1 (Layer1 and 2) and
L2 (Layer 3). It was assumed that locations with high
air voids in any layer have high potential for poor
performance. ‘‘O’’ represents the presence of high air
voids. The first 1 mile section had more problem
locations than the second 2 mile section. In addition,
there were less core locations with higher air voids in L2
(Layer 3).

Low tensile strength. The tensile strengths in the
layers were evaluated to define problem locations. The

TABLE 3.7
Overview of core conditions and water stripping severity results

R. P. Left W. P.

Depth/Water

Stripping Severity

Center of

Lane

Depth/Water

Stripping Severity Right W. P.

Depth/Water

Stripping Severity

3.004 O X 5.5 in./34%

3.198 X 4 in./29% O

3.227 O O

3.317 X 1.25 in./24% O

3.387 X 4.75 in./31% O

3.515 O X 1.5 in./32%

3.543 X 5.5 in./43% X 1.5 in./37%

3.551 O X 1.25 in./37%

3.697 O O

4.275 X 1.25 in./18%

4.282 O O

4.55 X 7.5 in./28% O

4.65 X 4 in./26% O

4.926 O X 1.5 in./53%

TABLE 3.8
Average water stripping severity in terms of layer at wheel paths
and statistical comparison between wheel paths

Layer Overall

Left Wheel

Path

Right Wheel

Path P-value

1 14.5% 3.5% 18.9% 0.86

2 37.2% 20.6% 45.4% 0.79

3 32.2% 28.7% 33.5% 0.12

Figure 3.20 Example of water stripping severity: (a) 3.5% severity; (b) 64% severity.
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overall average tensile strength was 130 psi with a
standard deviation of 53 psi. Based on the tensile
strength rating, tensile strength of 80 psi or higher are
considered to be good. The problem locations were
then defined to be ones with tensile strength of lower
than 80 psi, and the 80 psi approximately corresponds
to the low 10th percentile. Table 3.10 shows core
sample locations having low tensile strengths in the
test section for L1 (Layer1 and 2) and L2 (Layer 3). It
was interesting to note that all core samples with low
tensile were found to be located in L2.

High severity of water stripping. Problem locations
based on water stripping severity in the layers were
determined. The rating for water stripping severity
defines the poor to be 40% or higher. Overall, the
average of severity was 25% and 10% of core layer
samples fall in the poor rating based on its normal
distribution. The problem locations indicated by ‘‘O’’
with high severity of water stripping are shown in
Table 3.11.

3.5.2 Comparison of Test Results

Surface distresses and laboratory test results.
Locations of samples with higher air voids, low tensile
strength and high severity of water stripping were
compared to locations with pothole, patch, and fatigue
crack, as shown in Table 3.12. Longitudinal crack was
excluded in the comparison analysis because 12 out of
14 core locations have the longitudinal crack. Thus, the
results are not comparable in this analysis. A number of
problem locations in the test section were 11, 5, and 7
for high air voids, low strength, and high severity of
water stripping, respectively. In addition, the number of
locations with distress was seven. The probabilities that
a surface distress matches a location with poor
condition determined by high air voids, low strength,
and high severity of water stripping were 1.0 (7 out of
7), 0.29 (2 out of 7) and 0.57 (4 out of 7), respectively.
Thus, the probabilities of a surface distress on one of
poor conditions and on all poor conditions determined
by the laboratory tests were 1.0 and 0.17, respectively.

Figure 3.21 Correlation between water stripping severity and tensile strength by layer: (a) Layer 1; (b) Layer 2; (c) Layer 3; (d)
Overall layers.
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GPR and laboratory test results. The problem
locations based on the laboratory results and the
GPR analysis were compared by the layer, as shown
in Table 3.13 and Table 3.14. The probabilities that
a problem location determined by GPR matches a
location with poor condition determined by high air
voids, low strength, and high severity of water stripping
were 1.0 (6 out of 6), 0.0 (0 out of 6), and 0.67 (4 out of
6) for L1, respectively. In case of L2, the matching rates
were 0.29 (2 out of 7), 0.29 (2 out of 7), and 0.43 (3 out
of 7), respectively. The high air voids and the low tensile
strength showed the highest and the lowest matching
rates, respectively. Overall, the probability that a
location determined to be problematic by GPR to be
on one of the poor conditions based on lab tests was
1.0.

FWD and laboratory test results. A FWD deflec-
tion at each location represents a structural integrity
of all layers in pavement. In order to make the

laboratory results comparable to the FWD, one re-
presentative laboratory value at each core location
was required.

Weight factors in terms of depth were developed for
calculating the representative laboratory values for
locations. A multilayer elastic solution (i.e., Kenpave)
was used to calculate vertical stress changes in terms of
depth in pavement. The stress is used for determining
the weight factor used for each layer. The pavement
structure was simulated under a standard 18-kip single
axle load with 88 psi tire pressure; layer thickness
measured form the core specimens; and Poisson’s ration
of 0.35. Figure 3.24 (a) shows calculated vertical stress
reduction over a range of depth from 0 in. (surface) to
100 in. Below the depth of 72 in., vertical stress was
determined to be less than 1 and vertical stress below
that depth were assumed to be negligible. In order to
determine how much stress was applied over different
depth, weight factor was calculated using Equation 3.3,
as shown in Figure 3.24 (b)

Figure 3.22 Correlation between water stripping severity and air voids by layer: (a) Layer 1; (b) Layer 2; (c) Layer 3; (d)
Overall layers.
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Weight factord~
Vertical stressd

P72 in:
d~0 in: Vertical stressd

|100 ð3:3Þ

The representative value for each core location was
calculated by summing laboratory test values multiplied
by the weight factors for corresponding layer depth.

Weighted air voids, weighted tensile strength, and
weighted water stripping severity for each location
were compared to the FWD surface deflection, as
shown in Figure 3.25. It should be noted that there
were 7 out of 14 core locations which coincided with the
FWD test locations, thus, there were less data points
plotted for each plot. The R2 values for the correlations
of the FWD results with air voids, tensile strength, and
water stripping severity were 0.175, 0.021, and 0.205,
respectively. In other words, they had a very weak
correlation.

Surface distress and NDT results. Fatigue cracks,
potholes, or patches were compared to the GPR
analysis results. The GPR analysis identified problem
locations with total length of 2,203 ft long in the test
section. Comparing the problem locations determined
by GPR to the locations of surface distresses, they are
overlapped by approximately 19%. It is noteworthy
that no comparison analysis could be made between the
surface distresses and the FWD results since only one
location showed fatigue crack among the FWD
locations.

3.5.3 Test Method Evaluation Summary

N Laboratory test result correlation: The study showed

poor correlations among the water stripping severities,

air voids, and tensile strengths. Thus, the air voids or

tensile strength cannot properly estimate the water

stripping severity or vice versa.

N Surface distress and GPR results vs. laboratory test

results: The probabilities of a surface distress and a GPR

based location on one of the poor conditions determined

by the laboratory tests was 1.0. Accordingly, it was

concluded that the surface distresses and the GPR were

reliable indicators to evaluate the subsurface condition.

N FWD vs. laboratory test results: The R2 values for the

correlations of the FWD results with air voids, tensile

strength, and water stripping severity were 0.175, 0.021,

and 0.205, respectively. Consequently, since they had a

weak correlation, which is possibly due to fairly long

testing interval (i.e., 328 ft), the FWD test protocol is not

recommended for evaluating the subsurface condition

Figure 3.23 Air voids distributions and 90th percentiles by
layer: (a) Layer 1; (b) Layer 2; (c) Layer 3.

TABLE 3.9
Core locations with higher air voids

R. P.

High Air voids

R. P.

High Air voids

L1 L2 L1 L2

(Layer 1 and 2) (Layer 3) (Layer 1 and 2) (Layer 3)

3.004 O O 4.275 O O

3.198 4.282 O

3.227 4.55

3.317 O 4.65 O

3.387 O O 4.926 O

3.515 O O

3.543 O O

3.551 O O

3.697 O
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TABLE 3.10
Core locations with low tensile strengths (less than 80 psi)

R. P.

Low Tensile Strength

R. P.

Low Tensile Strength

L1 L2 L1 L2

(Layer 1 and 2) (Layer 3) (Layer 1 and 2) (Layer 3)

3.004 O 4.275 O

3.198 4.282

3.227 4.55

3.317 4.65

3.387 O 4.926

3.515

3.543

3.551 O

3.697 O

TABLE 3.11
Core locations with high severity of water stripping

R. P.

High Severity of Water Stripping

R. P.

High Severity of Water Stripping

L1 L2 L1 L2

(Layer 1 and 2) (Layer 3) (Layer 1 and 2) (Layer 3)

3.004 O 4.275 O O

3.198 4.282

3.227 4.55 O

3.317 O 4.65

3.387 O 4.926 O

3.515 O O

3.543

3.551

3.697

TABLE 3.12
Comparison of laboratory test results to surface distresses and GPR results

R. P. High Air Voids Low Strength High Severity of Water Stripping Pothole/Patch/Fatigue Cracks

3.004 O O O

3.198

3.227

3.317 O O O

3.387 O O O O

3.515 O O O

3.543 O O

3.551 O O

3.697 O O

4.275 O O O O

4.282 O O

4.55 O

4.65 O O

4.926 O O
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TABLE 3.13
Comparison of laboratory test results to GPR results for L1

R. P. High Air Voids Low Strength High Severity of Water Stripping GPR Analysis

3.004 O O O

3.198

3.227

3.317 O O

3.387 O

3.515 O O O

3.543 O O

3.551 O

3.697 O

4.275 O O O

4.282 O

4.55 O

4.65 O

4.926 O O O

TABLE 3.14
Comparison of laboratory test results to GPR results for L2

R. P. High Air Voids Low Strength High Severity of Water Stripping GPR Analysis

3.004 O O

3.198 O

3.227 O

3.317 O O

3.387 O O O

3.515 O O O

3.543 O

3.551 O O

3.697 O O

4.275 O O O O

4.282

4.55

4.65 O

4.926

Figure 3.24 Kenpave analysis result on vertical stress over depth: (a) vertical stress change over depth; (b) percent vertical stress
change over depth.
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determined by high air voids, low strength, or high
severity of water stripping.

N GPR vs. surface distress: The GPR analysis identified

problem locations with a total of 2,203 ft long in the test
section. Comparing the problem locations determined by
GPR to the locations of surface distresses, they are
overlapped by approximately 19%. This low correlation
indicates that the GPR and the surface distress should be
interpreted with the laboratory test results to improve the
accuracy level of their estimations.

4. GUIDELINES OF SUBSURFACE CONDITION
EVALUATION FOR PAVEMENT
PRESERVATION TREATMENTS

4.1 Guideline Overview

This guideline provides a project level tool for
subsurface evaluation of asphalt pavements for the
applicability of pavement preservation treatments
(PPTs), including seal coat, microsurface, ultrathin
bonded wearing course (UBWC), and 4.75 mm HMA
overlay, etc. The evaluation defines severity of subsur-
face distresses, quantifies their coverage (extent)

and distribution in a project using ground penetration
radar (GPR) test or surface distress, and laboratory
tests. An evaluation process developed through JTRP/
SPR-3507 consists of five major steps, including
preliminary assessment (checklist); analysis level sele-
ction and core location determination; layer determi-
nation, laboratory tests; and test result analysis, as
shown in Figure 4.1. Details of each step are in the
following sections.

4.2 Evaluation Procedure

4.2.1 Site Selection

This step involves the collection of information
regarding location, pavement history, design values,
and any existing data upon the selection of test site. The
specific portion or lane should be selected if the entire
test section is not subject to subsurface condition
evaluation. The length of a test section can be up to five
miles long. A section longer than five miles should be
divided by multiple subsections, where the length of
each subsection should not be longer than five miles.

Figure 3.25 Plot of weighted laboratory test results and surface deflection: (a) weighted air voids, (b) weighted tensile strength; (c)
weighted water stripping severity.
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Figure 4.1 Schematic of evaluation process.
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4.2.2 Preliminary Assessment (Checklist)

This preliminary assessment aids for assessing
adequacy of pavement condition for the application
of PPTs based on the information obtained from a
visual inspection of surface distress on the test section.
The pavement is considered to be a good candidate if it
meets all categories as shown in Figure 4.2. Otherwise,
a further examination of the pavement is required to
assess the adequacy.

4.2.3 Analysis Level Determination

The general approach for selecting or determining
evaluation inputs for the evaluation is a hierarchical
level system. The system is based on the philosophy that
the level of engineering effort exerted in the pavement
subsurface evaluation process should be consistent with
the relative importance, size, and cost of the project.
Level 1 is the most comprehensive procedure, involving
laboratory and GPR tests. In case of Level 2, pavement
distress surveys with the laboratory tests are conducted.
In contrast, Level 3 requires only the laboratory tests to
be conducted on randomly sampled cores and provides
the most simplified results among 3 analysis levels. It
should be noted that Level 1 analysis should be
performed if both Level 1 and Level 2 are applicable
for the project.

Level 1

N GPR data identifies problem locations in terms of layers
in a test section by selecting areas with relatively high
discrepancies in their dielectric values measured between
layers. It should be noted that the GPR data should be
collected from the right wheel path. Three problem
locations in each GPR detected layer should be selected.
At least one full-depth asphalt core per each selected
problem location should be sampled. In addition, at least
three full-depth asphalt cores from non-problem loca-
tions should be collected. The core locations should be
evenly distributed as far as possible in a test section. All
core samples are collected from the right wheel path on
which GPR test was conducted. For core size, 6 in.
diameter is recommended but 4 in. diameter is allowed.

Level 2

N Mapping surface distress by visual inspection or 3D laser
scanner (available at the INDOT Research and Deve-
lopment) is required for Level 2 analysis. Types of
distresses considered in the analysis are crack, pumping,
potholes, and patch. Distress measurements should be
presented as length (linear feet) in longitudinal direction.
Up to three most widely presented distress types in a test
section should be selected and three core samples per
each selected distress type are required for the test. Three
core samples from non-surface distress locations should
be collected. The core samples are collected from the
area, which is adjacent to the surface distress area.

Figure 4.2 Preliminary assessment of pavement subsurface condition evaluation for pavement preservation treatment (checklist).
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Level 3

N At least three core sampling locations are to be selected
in a test section. Evenly distributed core locations in a
test section are recommended.

N For core size, 6 in. diameter is recommended but 4 in.
diameter is allowed.

4.2.4 Layer Determination

Once the collected core samples are cleaned and
dried, visual inspection is conducted to identify layers
and exam any broken layer existence in core samples.

Level 1

N Based on GPR analysis and visual inspection, identified
layers are located and marked on the surface of each core
sample.

N Each core sample is then inspected for broken layers. If
found, record the core sample and layer number. Only
water stripping severity test is conducted for core layer
specimen containing broken layer.

N Test specimen, 6 in. or 4 in. of diameter with1.5 in. of
thickness, should be obtained from middle of each layer.
A specimen thickness range from 1.0 in and 1.5 in. is
acceptable in case of a layer thickness shorter than 1.5 in.
and thicker than 1 in. For a layer thickness shorter than
1in., a specimen should be prepared with combining an
adjacent layer (e.g., a combination of microsurface layer
with surface course) to meet the thickness requirement.

Level 2 and Level 3

N By visual inspection of each core sample, interface(s)
should be located first. Available construction docu-
ments can be a good reference in identifying different
layers.

N Thickness of each layer should be recorded.

N Each core sample is then inspected for broken layers. If
found, record the core sample and layer number. Only
water stripping severity test is conducted for core layer
specimen containing broken layer.

N Test specimen, 6 in. or 4 in. of diameter with1.5 in. of
thickness, should be obtained from middle of each layer.
A specimen thickness range from 1.0 in and 1.5 in. is
acceptable in case of a layer thickness shorter than 1.5 in.
and thicker than 1 in. For a layer thickness shorter than
1in., a specimen should be prepared with combining an
adjacent layer (e.g., a combination of microsurface layer
with surface course) to meet the thickness requirement.

4.2.5 Laboratory Test

Asphalt Mix Bulk Specific Gravity Test (AASHTO
T 331). The bulk specific gravity test should be
conducted for each core layer specimen according to
AASHTO T 331. AASHTO T 209 can also be used
for the measurement of bulk specific gravity only if
CoreLokH is not available (1,2).

Indirect Tension Test (AASHTO T 283). The tensile
strength of each core layer specimen is tested according

to AASHTO T 283 without conditioning (3). The
loading rate is 2 in. per min. Upon completion of IDT
test, digital image of split surface should be taken.

Water Stripping Severity Measurement (iMoisture).
The water stripping severity is measured on core layer
specimen using iMoisture. For additional information
regarding the usage of software, refer to the iMoisture
user’s manual (Appendix G).

Asphalt Mix Theoretical Maximum Specific Gravity
Test (AASHTO T 209). The maximum specific gravity
should be determined from the materials of at least two
replicates from the same core sampling location.

Laboratory Test Data Record (iSub). Laboratory test
results as well as general information of the test section
for each specimen should be recorded for analysis.
Figure 4.3 represents the form which may be used in
recording data. The test data can be recorded using
iSub explained in later chapter.

4.2.6 Analysis

Condition Rating. In order to determine the
subsurface condition, the laboratory test results should
be properly interpreted, core sample with higher air
voids, lower tensile strength, high water stripping
can have higher probability of poor performance.
Accordingly, the results of laboratory tests were
converted into three conditions; good, fair, and poor
conditions.

Air voids. Prior to the adoption of Percent Within
Limit (PWL), 8% air voids corresponded to a pay
factor of 1 for a dense-graded mixture in the INDOT
asphalt QC/QA. Furthermore, generally, air voids less
than approximately 8% in an asphalt mix are known as
good condition. Therefore, the condition ratings for air
voids to dense-graded type of mixture are the following:

N Good condition # 8%

N 8% , Fair condition # 10%

N Poor condition . 10%

Tensile strength. The rating for the tensile strength
was constructed based on the Illinois DOT’s guideline
as the same test method (modified AASHTO T 283)
was utilized by their guideline (25,26). Illinois guideline
defines tensile strength of 80 psi or higher to be good
and 30 psi or lower to be poor. Those values were
selected and the final rating guideline was determined as
follows:

N Good condition . 80 psi

N 50 psi , Fair condition # 80 psi

N Poor condition #50 psi

Water stripping severity. The rating for the wa-
ter stripping severity was determined based on the
laboratory test results. As the rating consists of three
levels, two threshold values were selected. By the
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inspection of core samples, as shown in Table 3.7, the
minimum severity which damaged core surface showed
was 18%. The good rating was then defined to be the
one with the water stripping severity less than 18%. On
the other hand, the severity above 90th percentile was
40.4% in its normal distribution, as shown in
Figure 4.4. The severity of 40% was selected to be the
other threshold value. The final rating guideline is
shown below:

N Good condition # 18%

N 18% , Fair condition # 40%

N Poor condition . 40%

Scoring System for Subsurface Distress Severity. In
order to understand the subsurface condition in a test
section, lab test results are converted to scales using
poor, fair, and good based on their distress severities as
shown in Table 4.1. It should be noted that the poorest
severity rating should be assigned for a broken sample
from the core sampling process.

The converted severities from lab data are utilized in
determination of the overall subsurface condition using
a condition scoring system: 2 for good condition; 1 for
fair condition; and 0 for poor condition. Among the
scores from air voids, tensile strength, and water
stripping severity, the lowest score (s) is selected for

each cut core sample. Then, the overall score (S) for
each location can be calculated using Equation 4.1. It
should be noted that subsurface condition for ‘‘problem
locations’’ in Level 1 and surface distress locations in
Level 2 are separately processed from non-problem
locations and non-surface distress locations. S can be
interpreted as shown in Table 4.2. S accepting for PPTs
should be higher than 40.

S~

Pm
l~1

Pn
r~1 srl

m|n|Smax
|100 ð4:1Þ

Figure 4.3 Laboratory testing results form.

Figure 4.4 Water stripping severity distributions and
90th percentiles.
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Where,

S: overall score (Sp for ‘‘problem locations’’ and
surface distress locations; Sn for ‘‘non-problem loca-
tions and non-surface distress; Sa for all locations in
case of Level 3 analysis)

m: total number of layers

n: total number of replicates

Smax: the maximum value of converted severities

srl: the lowest s for each cut sample (sprl for ‘‘problem
locations’’ and surface distress locations; snrl for ‘‘non-
problem locations and non-surface distress; sarl for all
locations in case of Level 3 analysis)

r: denotes the replicate number

l: denotes the layer number

Applicability of Pavement Preservation Treat-
ments (PPT). The GPR analysis result or surface
distresses are strongly related to the material
properties measured in lab. However, in reality, some
of GPR detections and surface distresses cannot be
explained by the limited lab test results only. Therefore,
if a difference between the lab test results from non-
problem locations and from non-surface distress
locations is insignificant, those locations are treated as
problem and surface distress locations. Thus, the test
section has uniformly distributed subsurface condition.
Subsequently, the acceptable Sn and Sp in Level 1 and
Level 2 are used for determining the PPT applicability
as shown Table 4.3. The non-uniform condition (i.e., Sp

# 60 and Sn . 60) requires a further analysis and is
explained following chapters. Since an assumption in
Level 3 analysis is the uniform distribution of
subsurface distress, the allowable Sa is only a factor
for the PPT determination as shown in Table 4.4.

Analysis for Non-Uniform Distribution. Evaluating
the subsurface condition coverage (%) and the
distribution along a test section is an important
process for determining PPT applicable lane length,

For example, a 5-mile long pavement section with
uniformly distributed 20% coverage of problem
locations may not be a good candidate for the PPT.
However, if all problem locations are located within 1-
mile, the PPT can be applicable for the rest of 4-mile
section.

Coverage (Extent) of Problem Location. The cov-
erage (extent) of subsurface condition can only be
determined when either Level 1 or Level 2 was selected
for the evaluation. In case of Level 3, only the severity
rating of the test section is reported. The guideline for
the extent level of subsurface distresses is the following:

Level 1. The GPR analysis results should provide the
coverage of problem locations for each identified layer.
In case multiple layers are determined to have proble-
matic subsurface condition, the total coverage is
determined by adding the coverage of all layers while
excluding the overlapped area. The overlapped loca-
tions are a certain section which was determined to be
problematic in more than one layer. Consequently,
overlapped locations should only be counted once in
the calculation of total coverage of problem locations.

Level 2. The coverage of surface distresses types
selected for determining core sampling locations are
only used in the analysis. The length-based coverage
can be defined as the longitudinal length covered with
distress in a given test section and add effective length
for the length-based calculation of transverse crack and
pothole. The length-based coverage is uniformly used in
order to add up the extents of all distress types and a
single coverage value representing a pavement condi-
tion can be used. Consequently, the length-based
coverage calculation of longitudinal crack remains the
same. In case of fatigue crack, pumping, potholes, and
patch, only the effective longitudinal length of each
distress area is included and divided by the total length
instead of the area. It is assumed that each distress has
an effective length of 20 ft. For example, 10 potholes
are converted into 200 ft (10 6 20 ft). In case more

TABLE 4.3
PPT applicability for subsurface conditions (Level 1 and Level 2)

Sp Sn PPT Applicability Distribution

. 60 . 60 Yes Uniform

# 60 # 60 No Uniform

# 60 . 60 No or partial yes Non-uniform

TABLE 4.1
Lab test result conversion to severity

Air Voids(AV) Tensile Strength(TS)

Water Stripping Severity

(WS) Condition Score(s)

# 8 % . 80 psi # 18 % Good 2 (Smax)

8 , AV # 10 % 50 , TS # 80 psi 18 , WS # 40 % Fair 1

. 10 % # 50 psi . 40 % Poor 0

TABLE 4.2
Score interpretation for subsurface condition

S (Sp, Sn, or Sa) Condition

$ 81 Excellent

61 # S # 80 Good

41 # S # 60 Fair

21 # S # 40 Poor

S # 20 Very poor
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than one pavement sections with surface distresses are
included in the analysis, the total coverage should be
determined by adding the coverage from all types of
distresses excluding the overlapped area. The over-
lapped locations are in a certain section which was
determined to be covered with more than one type
surface distress.

Distribution Analysis. The analysis process reviews
the problem locations and their influence length in
order to find any PPT applicable locations in a section.
The process includes (1) determination of Distress
Coverage of Unit Analysis Length (DCUAL); (2)
application of allowable DCUAL; and (3) determina-
tion of PPT applicable locations.

The distress coverage for each unit analysis length
UAL (1 mile) is calculated using Equation 4.2. For
example, if the frequency of data collection is 10 ft., the
first distress coverage of UAL is for a section is between
0 ft to 5280 ft (1 mile) away from the beginning of the
section. Accordingly, the second UAL for the section is
between 10 ft to 5290 ft away from the beginning of the
section. The allowable DCUALi for the PPT applica-
tions varies by the type of a test section. Any locations
with DCUALi equal or less than the allowable coverage
is determined to be adequate for the application PPT as
shown in Table 4.5.

DCUALi~

Pizj
i Si

j
|100 ð4:2Þ

Where,

DCUALi (i50, 1, …, n-1-j) 5 distress coverage of
unit analysis length at ith

i 5 0, 1, …, n-1-j, where n is the total number of data
for a test section

j 5 total number of data in unit analysis length
(UAL, 1 mile long)

S 5 distress index (i.e., presence of distress for 1 and
non-presence of distress for 0)

4.3 iSub Overview

The evaluation software ‘‘INDOT Pavement Sub-
surface Condition Evaluation (iSub)’’ (see Figure 4.5)
was developed as part of the JTRP/SPR-3507: Sub-
surface Condition Evaluation for Asphalt Surface to
aid the pavement subsurface condition evaluation. The
software is entirely based on the ‘‘Guidelines of sub-
surface condition evaluation for pavement preserva-
tion.’’ Thus, iSub provides user-friendly system which
helps to follow the hierarchy of evaluation steps.
Furthermore, iSub automatically calculates the overall
condition of the pavement subsurface as severity rating
for each laboratory test result was implemented into the
software. However, it should be noted that iSub does
not determine core sampling location nor analyze GPR
and surface distress survey data. The guideline should be
used in core sampling location determination and iSub
aids the subsurface condition determination process
based on laboratory test results. For additional details,
please refer to the iSub user manual (Appendix F).

4.4 iMoisture Overview

The evaluation software ‘‘INDOT Water Stripping
Severity Evaluation (iMoisture)’’ (see Figure 4.6) was
developed to aid the water stripping severity evaluation
and incorporate INDOT subsurface condition evalua-
tion process. Asphalt mixture is primarily composed of
asphalt and aggregate. Aggregates should be comple-
tely coated by asphalt. Thus, the uncoated aggregate is
an index of water stripping, iMoisture detects uncoated
aggregates and quantifies the area in a sample by
employing the digital image analysis technology. For
additional details, please refer to the iMoisture user
manual (Appendix G).

TABLE 4.5
Allowable DCUAL for road type

DCUAL PPT Applicability

# 5 % Interstate

# 10 % US Highway

# 20 % State road/Others

TABLE 4.4
PPT applicability for subsurface conditions (Level 3)

Sa PPT Applicability Distribution

. 60 Yes Uniform

# 60 No Uniform
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Figure 4.5 iSub: INDOT Subsurface Condition Evaluation Software.
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5. EXAMPLE APPLICATION OF GUIDELINE

A guideline for evaluation of subsurface condition
for applicability of Indiana pavement preservation
treatments (PPTs) was developed and presented in
Ch. 4. Specifically, the guideline, utilizing GPR mea-
surements, surface distress, and laboratory tests,
estimates the pavement subsurface condition for PPT
applicability to aid decision making. The evaluation
provides severity of subsurface distresses, quantifies
their coverage (extent), and distribution in a project.
This chapter presents the analysis results conducted
on the SR-70 test section. Two different evaluation
methods presented in the guideline were applied, GPR
based (Level 1) and surface distress based (Level 2). A
summary of the case study is the following.

5.1 Level 1 Analysis (GPR Analysis–Based Result)

Table 5.1 presents the summary of the subsurface
condition evaluation based on GPR analysis. Overall,
11.81 % of Layer 1 and 2, and 16. 96 % of Layer 3 in
the test section was determined to be problematic.
According to the average laboratory test results at the
problem locations, the condition of Layer 1 and Layer
3 were the poorest and the best, respectively. In detail,
Layer 1 showed the highest average air voids and lowest
average tensile strength. Layer 3 showed the highest
average water stripping severity.

Table 5.2 summarizes the subsurface condition eva-
luation based on the non-problem locations. Overall,
92.19 % of Layer 1 and 2, and 83.04 % of Layer 3 in the
test section were covered with non-problem locations.

Figure 4.6 iMoisture: INDOT Water Stripping Severity Evaluation Software.
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In addition, generally, the non-problem locations had
better subsurface conditions comparing to the problem
locations. Thus, in comparison, the average air voids
and the average water stripping severities in the non-
problem locations were lower, and the average tensile
strengths were higher for all layers except higher Layer
3 with higher air voids and Layer 1 with higher water
stripping severity.

The findings from Table 5.1 and Table 5.2 confirm
that the evaluation method with GPR is valid for
interpreting the subsurface condition. P-values from t-
test, as shown in Table 5.3, generally, supports the
finding. In other words, the laboratory test results at
the GPR based problem locations are significantly
different from that at the non-problem locations at 5%

significance level except the average air voids and
tensile strength in Layer 2.

The lab test results were converted to scores using the
guidelines (refer to Ch. 4. 9. 2). The overall scores for
the problem locations were 42 with the coverage of 20.5
%. The coverage of non-problem locations was 79.5%

and its overall subsurface condition score was 76.

As the overall scores for problem and non-problem
locations indicate, the test section showed non-uniform
distribution, thus the subsurface distress distribution
anlaysis along the test section was evaluated (refer to
Ch. 4.9.4). The DCUAL analysis showed that the entire
test section was determined to be not applicable for the
pavement preservation treatment based on the allow-
able coverage for state road (DCUALj # 20%) as
shown in Figure 5.1.

5.2 Level 2 Analysis (Surface Distress–Based Result)

According to the surface distress survey using the
digital image acquisition system, the main distresses on
SR-70 were longitudinal cracks, fatigue cracks, and
potholes. The longitudinal crack was the most widely
distributed distress (among the three distress types) with
22% of lane length in the 2-mile test section.
Furthermore, more distresses were shown on R.P. 3-4
than on R.P. 4-5.

Based on the water stripping test results and the core
visual observations, it was confirmed that the test
section on SR-70 had the water stripping problem. In
addition, overall, there was no subsurface condition
difference between left wheel and right wheel paths.

As summarized in Table 5.4, based on condition
ratings from the laboratory test results at the test section
locations with the surface distresses, generally, each layer
showed different subsurface condition. Specifically,
Layer 1 was determined to be the poorest condition
and Layer 3 to be the best condition according to their
air voids. The average tensile strengths indicated good
condition in all three layers. Based on the water stripping
severities, Layer 2 was in the poorest condition.

Table 5.5 summarizes condition ratings from the
laboratory test results at the test section locations
without the surface distresses. When the results are
compared to that with surface distresses in Table 5.4,
average air voids and water stripping severities decrease
and average tensile strengths increase. The observation
confirms that the evaluation process using the surface
distress is valid for understanding the subsurface

TABLE 5.1
Laboratory test results in GPR problem locations

Layer Avg. air voids [%] Avg. tensile strength [psi] Avg. water stripping severity [%] Coverage [%]

1 12.4 (Poor) 57 (Poor) 10.7 (Good) 11.81

2 8.2 (Fair) 152 (Good) 53.1 (Poor)

3 3.7 (Good) 128 (Good) 29.6 (Fair) 16.96

TABLE 5.2
Laboratory test results in non-problem locations

Layer Avg. air voids [%] Avg. tensile strength [psi] Avg. water stripping severity [%] Coverage [%]

1 10.7 (Poor) 177 (Good) 17.3 (Good) 92.19

2 7.8 (Good) 159.4 (Good) 31.1 (Fair)

3 5.2 (Good) 100.3 (Good) 33.4 (Fair) 83.04

TABLE 5.3
T-test results for laboratory test results in problem and non-problem locations

Layer Avg. air voids [%] Avg. tensile strength [psi] Avg. water stripping severity [%]

1 0.045 0.0043 0.046

2 0.79 0.61 0.009

3 0.0001 0.042 0.23
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condition. However, P-values from t-test, as shown in
Table 5.6, generally, result in the laboratory test results
at the test section locations with surface distresses are
not significantly different from that without surface
distresses at 5% significance level.

The lab test results were again converted to scores
using the guidelines. The overall score of the test section
covered with the surface distresses by 28% was 56.
Thus, the extent level of subsurface distresses was
determined to be fair. In addition, the overall score for
the test section without surface distresses was 78, which
is good condition.

The subsurface condition conducted using Level 2
analysis also showed that the test sections had non-
uniform distribution. A DCUAL distribution along
the test section is shown in Figure 5.2. The overall
28% of the test section was covered with surface
distress; however, the distress was densely populated
in the first half-mile test section. Considering the
allowable distress coverage for state roads (DCUALj
# 20%), a specific test section located between
1,860 ft and 8,320 ft from R. P. 3 can be determined
to be applicable for the pavement preservation
treatment.

Figure 5.1 Distress distribution analysis of SR-70 based on GPR analysis.

TABLE 5.4
Laboratory test results with surface distresses

Layer Avg. air voids [%] Avg. tensile strength [psi] Avg. water stripping severity [%] Coverage [%]

1 12.1 (Poor) 87.4 (Good) 18.1 (Fair) 28

2 9.6 (Fair) 152 (Good) 44.8 (Poor) 28

3 4.5 (Good) 117 (Good) 37.4 (Fair) 28

TABLE 5.5
Laboratory test results without surface distresses

Layer Avg. air voids [%] Avg. tensile strength [psi] Avg. water stripping severity [%] Coverage [%]

1 10.4 (Poor) 163 (Good) 10.9 (Good) 72

2 6.8 (Good) 161 (Good) 32.2 (Fair) 72

3 5.2 (Good) 96 (Good) 24.8 (Fair) 72

TABLE 5.6
T-test results for the laboratory test results with and without surface distresses

Layer Avg. air voids [%] Avg. tensile strength [psi] Avg. water stripping severity [%]

1 0.14 0.19 0.16

2 0.014 0.48 0.21

3 0.23 0.13 0.11

40 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2013/05



6. SUMMARY AND CONCLUSION

6.1 Evaluation of Subsurface Condition Test Methods

N A new method for quantifying the water stripping
severity was developed with computer software using
the digital image analysis. The new method can provide a
consistent and rational engineering indicator for the
measurement of water stripping severity.

N When the laboratory test results with the surface
distresses or in the GPR-based problem locations were
compared to that without the surface distresses or in the
GPR-based non-problem locations, in general, average
air voids and water stripping severities decrease and
average tensile strengths increase. Accordingly, it was
concluded that both the surface distresses survey and the
GPR measurement were reliable method to determine
the core sampling locations to evaluate the subsurface
condition.

N In addition, core samples with poor conditions, based on
the laboratory tests, were correctly matched to the
problem locations determined by the distress survey
and GPR measurement. The observation confirms that
the laboratory evaluation processes are applicable for
evaluating the subsurface condition.

N The FWD results had a weak correlation with the
laboratory test results possibly due to fairly long testing
interval (i.e., 328 ft). The current FWD test protocol
should be improved for evaluating the subsurface
condition in pavement preservation application.

6.2 Guideline of Subsuface Condition Evaluation

N A methodology for evaluating subsurface condition of
pavement was developed utilizing the findings from the
study on SR-70. A concept of hierarchy was used in the
methodology by taking project importance and available
resources into consideration. A tool including guidelines,
computer software (e.g., iSub and iMoisture), and its
manual was also developed based on the methodology as
a research product. The tool can help a consistent and
rational decision making process for project level or
district level pavement preservation program.

6.3 Example Application of Guideline on SR-70

N The main distresses on SR-70 were longitudinal cracks,
fatigue cracks, and potholes. The longitudinal crack was
the most widely distributed distress with 22% of lane
length in the 2-mile test section among the three distress
types. Furthermore, more distresses were shown on R.P.
3-4 than on R.P. 4-5. Based on the water stripping severity
test results and the visual observations of core samples, it
was confirmed that the test section on SR-70 had the
water stripping problem. In addition, there was no
significant subsurface condition difference between left
wheel and right wheel paths. In general, the Layer 1 was in
the poorest condition based on the laboratory test results.

N The conditions were converted into the overall scores
scaled from 0 to 100. Layers with a score closer to 100 are
in better subsurface condition. As a result, the 28% of the
test section length with was determined to have the fair
subsurface condition by the level 2 evaluation with
surface distress. The rest 72% of the test section without
surface distresses was estimated to have the good
subsurface condition. Similarly, 20.5% of the test section
length contained the problem locations with the fair
subsurface condition and the rest 79.5 % of the length
had the good subsurface condition.
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APPENDIX A. CORE LABORATORY TEST RESULTS

ID

Mid-Layer

Depth [in.] Layer No. Location [mile] Location [ft] Wheel Path Gmb Air Voids [%]

Tensile Strength

[psi]

Water Stripping

Severity [%]

1 0.95 1 0.004 21.12 R 2.12 13.46 185.2 27.47

2 2.9 2 0.004 21.12 R 2.26 9.30 144.2 7.14

3 4.9 3 0.004 21.12 L 2.20 8.33 0.0 13.86

4 6.6 3 0.004 21.12 L 2.32 4.22 116.7 0.00

5 8 3 0.004 21.12 L 2.35 3.05 100.2 0.00

6 1.05 1 0.198 1045.44 R 2.23 9.05 206.1 27.58

7 3.05 2 0.198 1045.44 R 2.33 6.54 220.2 0.00

8 4.95 2 0.198 1045.44 L 2.36 5.36 158.9 0.00

9 6.8 2 0.198 1045.44 R 2.34 6.19 168.6 28.13

10 1 1 0.227 1198.56 R 2.24 8.57 203.4 0.00

11 2.9 2 0.227 1198.56 R 2.33 6.61 186.9 0.00

12 4.8 2 0.227 1198.56 R 2.33 6.53 139.0 36.97

13 6.7 2 0.227 1198.56 R 2.39 3.93 110.6 44.02

14 8.7 2 0.227 1198.56 R 2.38 4.35 93.7 17.43

15 11.05 2 0.227 1198.56 R 2.37 4.74 95.8 46.25

16 0.5 1 0.317 1673.76 R 2.20 10.29 0.0 20.92

17 1.55 2 0.317 1673.76 R 2.26 9.09 176.1 28.52

18 3.15 3 0.317 1673.76 R 2.38 1.43 167.7 17.88

19 5.15 3 0.317 1673.76 L 2.37 2.24 151.1 31.17

20 6.85 3 0.317 1673.76 L 2.40 0.69 135.5 24.84

21 0.6 1 0.387 2043.36 L 2.16 11.72 152.2 19.66

22 2.1 2 0.387 2043.36 L 2.24 9.98 134.0 12.95

23 3.95 3 0.387 2043.36 L 2.38 1.55 158.3 26.31

24 5.95 3 0.387 2043.36 R 2.29 5.42 82.3 35.21

25 8 3 0.387 2043.36 R 2.28 5.60 86.1 44.77

26 9.7 3 0.387 2043.36 R 2.29 5.21 82.7 61.94

27 0.65 1 0.515 2719.2 L 2.13 13.20 0.0 50.14

28 2.2 2 0.515 2719.2 L 2.29 8.01 116.7 0.00

29 4.1 3 0.515 2719.2 L 2.28 5.65 96.3 0.00

30 6 3 0.515 2719.2 R 2.25 7.15 79.2 56.88

32 0.65 1 0.543 2867.04 R 2.16 11.76 0.0 54.89

33 2.3 2 0.543 2867.04 R 2.25 9.53 162.2 34.24

34 3.95 3 0.543 2867.04 R 2.30 5.07 135.2 83.93

35 5.4 3 0.543 2867.04 R 2.30 5.07 122.6 70.00

36 6.9 3 0.543 2867.04 R 2.25 7.07 89.7 38.32

38 0.75 1 0.551 2909.28 R 2.20 10.34 141.6 54.50

39 2.45 2 0.551 2909.28 R 2.21 11.14 172.7 43.36

40 4.35 3 0.551 2909.28 R 2.26 6.72 97.7 38.07

41 6.05 3 0.551 2909.28 R 2.21 8.64 92.3 35.93

44 0.75 1 0.697 3680.16 L 2.21 9.79 239.2 35.38

45 2.5 2 0.697 3680.16 L 2.25 9.54 172.3 60.92

46 4.45 3 0.697 3680.16 L 2.34 3.25 130.5 45.53

47 6.25 3 0.697 3680.16 R 2.30 5.03 95.7 37.01

50 0.55 1 1.275 6732 R 2.14 12.53 155.3 28.03

51 2.05 2 1.275 6732 R 2.24 10.16 153.8 46.46

52 3.7 2 1.275 6732 R 2.39 3.87 155.6 49.22

53 5.35 3 1.275 6732 R 2.28 5.60 133.4 32.29

56 0.65 1 1.282 6768.96 R 2.15 12.18 146.7 24.78

57 1.85 2 1.282 6768.96 R 2.19 12.17 153.8 51.14

58 3.1 2 1.282 6768.96 R 2.27 8.68 144.4 31.62

59 4.6 3 1.282 6768.96 R 2.38 1.66 143.8 55.41

62 0.6 1 1.55 8184 R 2.18 10.96 164.9 0.00

63 1.9 2 1.55 8184 R 2.27 8.76 202.8 37.14

64 3.35 2 1.55 8184 R 2.33 6.35 196.9 27.49

65 4.75 2 1.55 8184 L 2.35 5.56 194.9 0.00

66 6.35 3 1.55 8184 L 2.29 5.33 127.2 41.16

67 8.15 3 1.55 8184 R 2.29 5.15 98.2 29.73

Table continued on p. 44.
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APPENDIX B. PRELIMINARY ASSESSMENT

APPENDIX C. INDOT GUIDELINE OF SUBSURFACE CONDITION EVALUATION FOR PAVEMENT
PRESERVATION TREATMENT

APPENDIX D. INDOT PAVEMENT SUBSURFACE CONDITION EVALUATION SOFTWARE (ISUB)

APPENDIX E. INDOT WATER STRIPPING SEVERITY EVALUATION SOFTWARE (IMOISTURE)

APPENDIX F. INDOT PAVEMENT SUBSURFACE CONDITION EVALUATION SOFTWARE
(ISUB) MANUAL

APPENDIX G. INDOT WATER STRIPPING SEVERITY EVALUATION SOFTWARE
(IMOISTURE) MANUAL

Appendices B through G are available for download here: http://dx.doi.org/10.5703/1288284315187

TABLE
(Continued)

ID

Mid-Layer

Depth [in.] Layer No. Location [mile] Location [ft] Wheel Path Gmb Air Voids [%]

Tensile Strength

[psi]

Water Stripping

Severity [%]

68 0.55 1 1.65 8712 R 2.13 12.94 157.5 23.04

69 1.7 2 1.65 8712 L 2.11 15.23 150.5 0.00

70 3 2 1.65 8712 L 2.27 8.97 172.6 17.96

71 4.4 3 1.65 8712 R 2.28 5.57 110.7 38.28

72 5.95 3 1.65 8712 R 2.27 6.12 100.7 57.72

74 0.75 1 1.926 10169.28 R 2.13 13.04 0.0 31.62

75 2.35 2 1.926 10169.28 R 2.31 7.09 154.6 21.23

76 3.8 3 1.926 10169.28 R 2.32 4.05 102.8 25.24

77 4.9 3 1.926 10169.28 R 2.33 3.55 94.5 21.97
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collaborative effort was called the Joint Highway Research Project (JHRP). In 1997 the collaborative 
venture was renamed as the Joint Transportation Research Program (JTRP) to reflect the state and 
national efforts to integrate the management and operation of various transportation modes. 

The first studies of JHRP were concerned with Test Road No. 1 — evaluation of the weathering 
characteristics of stabilized materials. After World War II, the JHRP program grew substantially and 
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